Issue
Korean Journal of Chemical Engineering,
Vol.38, No.7, 1333-1347, 2021
Multiscale modeling and integration of a combined cycle power plant and a two-tank thermal energy storage system with gPROMS and SimCentral
With different computational tools, simulations ranging from detailed and rigorous mathematical models to overall process plant of black box models can be carried out. Whereas most of these computational tools cannot practically execute different scales of models at the same time, it becomes relevant to devise strategies in coupling two or more of them for better analysis of processes. In this light, this study proposes Excel as an interactive scale bridge of data exchange to aid the multiscale modeling and dynamic simulation of combined cycle (CC) power plant integration with two-tank thermal energy storage (TES) system using gPROMS and SimCentral. This is relevant to analyze not only the performance of TES, but the feasibility of its integration with CC in augmenting energy production to meet daily power demand. The integrated system modeled in four operational modes of CC increased in power generation by 7.3MW at an efficiency of 98.30%. The study validated the usefulness of the TES integration of 99.66% efficiency. The research results provide a communication strategy for different computational tools and an approach to effectively increase CC power production to meet varying daily demand.
[References]
  1. Khanna M, Rao MD, Annu. Rev. Resour. Econ., 1, 568, 2009
  2. Johnson M, Vogel J, Hempel M, Dengel A, Seitz M, Hachmann B, Energy Procedia., 73, 281, 2015
  3. Interactive Gas Turbine Portfolio Brochure, Siemens, https://assets.new.siemens.com/siemens/assets/api/uuid:10f4860b140b2456f05d32629d8d758dc00bcc30/gas-turbines-siemens-interactive.pdf.
  4. Rahman A, Smith AD, Fumo N, Appl. Therm. Eng., 100, 668, 2016
  5. Cruickshank CA, Evaluation of a stratified milti-tank thermal storage for solar heating applications, PhD Thesis, Queen’s University (2009).
  6. Rodriguez I, Perez-Segarra CD, Lehmkuhl O, Oliva A, Appl. Energy, 109, 402, 2013
  7. Garcia IL, Alvarez JL, Blanco D, Sol. Energy, 85(10), 2443, 2011
  8. Parrado C, Marzo A, Fuentealba E, Fernandez AG, Renew. Sust. Energ. Rev., 57, 505, 2016
  9. Heller L, Gauche P, Sol. Energy, 93, 345, 2013
  10. Daniel C, Natalie S, Charles F, Trans. Amer. Nucl. Soc., 116(2), 837, 2017
  11. Edwards J, Bindra H, Sabharwall P, Ann. Nucl. Energy, 96, 104, 2016
  12. Maurstad O, LFEE, 2005-002 WP (2005), https://sequestration.mit.edu/pdf/LFEE_2005-002_WP.pdf.
  13. Alqahtani BJ, Patino-Echeverri D, Appl. Energy, 169, 927, 2016
  14. Garbrecht O, Bieber M, Kneer R, Energy, 118, 876, 2017
  15. Johnson M, Vogel J, Hempel M, Dengel A, Seitz M, Hachmann B, Energy Procedia, 73, 281, 2015
  16. Verma P, Varun, Singal SK, Renew. Sust. Energ. Rev., 12(4), 999, 2008
  17. Vasilios V, US Patent, 61,954,619 (2014).
  18. Drost K, Antoniak Z, Brown D, Energy Conv. Eng. Con., 4, 251, 1990
  19. Drost MK, Antoniak ZI, Brown D, Somansundaram S, US. Dep. Energy, PNL-7403 (1990).
  20. Tao WQ, He YL, IHTC 14. 8, 671 (2010), https://doi.org/10.1115/IHTC14-23408.
  21. Krzhizhanovskaya VV, Groen D, Bozak B, Hoekstra AG, Procedia. Comput. Sci., 51, 1082, 2015
  22. Helmns A, Carey VP, J. Therm. Sci. Eng. Appl., 10(5), 051004, 2018
  23. Parsazadeh M, Duan XL, Appl. Energy, 216, 142, 2018
  24. Fasano M, Borri D, Cardellini A, Alberghini M, Morciano M, Chiavazzo E, Asinari P, Energy Procedia, 126, 509, 2017
  25. Lee JC, Kofi OS, Kim SY, Hong SG, Oh M, J. Eng. Sci. Technol., 10, 48, 2015
  26. Morales-Rodriguez R, Gani R, Comput. Aided Chem. Eng., 24, 207, 2007
  27. Morales-Rodriguez R, Gani R, Comput. Aided Chem. Eng., 26, 495, 2007
  28. Morales-Rodriguez R, Gani R, Dechelotte S, Vacher A, Baudouin O, Chem. Eng. Res. Des., 86(7A), 823, 2008
  29. Jaworski Z, Zakrzewska B, Comput. Chem. Eng., 35(3), 434, 2011
  30. Heidebrecht P, Pfafferodt M, Sundmacher K, Chem. Eng. Sci., 66(19), 4389, 2011
  31. Vlachos DG, Mhadeshwar AB, Kaisare NS, Comput. Aided Chem. Eng., 30(10-12), 1712, 2006
  32. Pozzetti G, Peters B, Int. J. Multiph. Flow, 99, 186, 2018
  33. Park HM, Int. J. Heat Mass Transf., 75, 545, 2014
  34. Oh DH, Jeon RY, Kim JH, Lee CH, Oh M, Kim KJ, Cryst. Growth Des., 19(2), 658, 2019
  35. Vo ND, Jung MY, Oh DH, Park JS, Moon I, Oh M, Combust. Flame, 189, 12, 2018
  36. Lee GH, Vo ND, Jeon RY, Han SW, Hong SU, Oh M, Korean J. Chem. Eng., 35(9), 1791, 2018
  37. Lee HH, Lee JC, Joo YJ, Oh M, Lee CH, Appl. Energy, 131, 425, 2014
  38. Electrical energy storage, Technical Report, International Electrochemical Commission, http://www.iec.ch/whitepaper/pdf/iecWPenergystorage-LR-en.pdf (2011).
  39. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E, Commun. Comput. Phys., 2(3), 367, 2007
  40. Ingram GD, Cameron IT, Hangos KM, Chem. Eng. Sci., 59(11), 2171, 2004
  41. Dada JO, Mendes P, Integr. Biol., 3(2), 86, 2011
  42. Yang AD, Marquardt W, Comput. Chem. Eng., 33(4), 822, 2009
  43. Hoekstra A, Chopard B, Coveney P, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372(2021), 201303, 2014
  44. Chopard B, Borgdorff J, Hoekstra AG, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372(2021), 201303, 2014
  45. Zitney SE, CAPE-OPEN integration for advanced process engineering co-simulation, Final Report. DOE/NETL-IR-2007.
  46. Zaversky F, Garcia-Barberena J, Sanchez M, Astrain D, Sol. Energy, 93, 294, 2013
  47. Jarvis RB, Pantelides CC, Robust dynamic simulation of chemical engineering processes, PhD Thesis, Imperial College London University (1993).
  48. Shelton W, Lyons J, Shell gasifier IGCC base cases, Report. NETL PED-IGCC-98-002 (2000).
  49. Boukelia TE, Mecibah MS, Kumar BN, Reddy KS, Energy, 88, 292, 2015
  50. Dunn RI, Hearps PJ, Wright MN, Proc. IEEE, 100(2), 504, 2012
  51. Lee WS, Lee JC, Oh HT, Baek SW, Oh M, Lee CH, Energy, 134, 731, 2017
  52. Schulte-Fischedick J, Tamme R, Herrmann U, Ameri. Soc. of Mech. Eng., 2, 515 (2008).