Issue
Korean Journal of Chemical Engineering,
Vol.38, No.6, 1277-1290, 2021
Synthesis, characterization of novel Fe-doped TiO2 activated carbon nanocomposite towards photocatalytic degradation of Congo red, E. coli, and S. aureus
In this work, the synthesis, characterization, and photocatalytic activity of iron-doped titanium dioxide nanoparticles (FDT) supported on environmentally benign activated carbon (PAC) has been discussed. The photocatalytic activity of the nanocomposite was investigated for the degradation of Congo red (CR) dye from aqueous solution under visible light (520 nm), and it was observed that 100% degradation for 20 ppm CR solution took place within 60 mins. The experimental data of photodegradation of CR using the FDT/PAC nanocomposite had the highest correlation with Langmuir Hinshelwood model and pseudo-first-order rate kinetics with an apparent rate constant of 0.05341min-1 and half-life period of 12.97mins, respectively. The thermodynamics study revealed that the degradation process is exothermic and spontaneous. The effect of interfering ions on the degradation of CR solution was also examined. The photocatalytic antibacterial activity of the nanocomposite was tested against two bacteria pathogens, Escherichia coli and Staphylococcus aureus, and it was found that for the concentration of 105 CFU ml-1, 100% photocatalytic inactivation was achieved for both Escherichia coli in 120mins and Staphylococcus aureus in 75 mins under visible light irradiation. The total electrical energy consumed and operating cost were measured and the total operating cost was 312.50, 236.74, and 166.67 INR (Indian rupee) for 20 ppm, 60 ppm, and 100 ppm CR dye removal using 0.06 g FDT/PAC nanocomposite, respectively.
[References]
  1. Kumar K, Chowdhury A, Encycl. Renew. Sustain. Mater., 1, 949, 2020
  2. Ibhadon AO, Fitzpatrick P, Catalysts, 3, 189, 2013
  3. Khan MM, Adil SF, Al-mayouf A, Adil SF, J. Saudi Chem. Soc., 19, 462, 2015
  4. Ma JZ, He H, Liu FD, Appl. Catal. B: Environ., 179, 21, 2015
  5. Mandari KK, Police AKR, Do JY, Kang M, Byon C, Int. J. Hydrog. Energy, 43(4), 2073, 2018
  6. Khairy M, Zakaria W, Egypt. J. Pet., 23, 419, 2014
  7. Li Y, Chen J, Liu J, Ma M, Chen W, J. Environ. Sci., 22, 1290, 2011
  8. Eshaghi A, Moradi H, Adv. Powder Technol., 29(8), 1879, 2018
  9. Rivera KKP, De Luna MDG, Suwannaruang T, Wantala K, Int. Conf. Biol. Civ. Environ. Eng., March 27-18, 208 (2014).
  10. Nishimura A, Ishida N, Tatematsu D, Hirota M, Koshio A, Kokai F, Hu E, Int. J. Photoenergy, 2017, 1, 2017
  11. Valero-Romero MJ, Santaclara JG, Oar-Arteta L, van Koppen L, Osadchii DY, Gascon J, Kapteijn F, Chem. Eng. J., 360, 75, 2019
  12. Zhou W, Zhang P, Liu W, Int. J. Photoenergy, 2012, 28, 2011
  13. Mohammad S, Alam M, Sela SK, Nayab-ul-hossain AKM, Masud M, Sajib K, Hasan MR, J. Text. Eng. Fash. Technol., 3, 666, 2017
  14. Routoula E, Patwardhan SV, Environ. Sci. Technol., 54, 647, 2020
  15. Harry-asobara JL, Kamei I, Appl. Biochem. Biotechnol., 159, 1183, 2019
  16. Wang J, Li C, Zhuang H, Zhang J, Food Control, 34, 372, 2013
  17. Eswar NK, Ramamurthy PC, Madras G, New J. Chem., 40, 3464, 2016
  18. Yadav HM, Otari SV, Koli VB, Kook C, Pawar SH, Delekar SD, J. Photochem. Photobiol. A-Chem., 280, 32, 2014
  19. Zhang BG, Zou SQ, Cai RQ, Li M, He Z, Appl. Catal. B: Environ., 224, 383, 2018
  20. Vereb G, Manczinger L, Bozso G, Sienkiewicz A, Forro L, Mogyorosi K, Hernadi K, Dombi A, Appl. Catal. B: Environ., 129, 566, 2013
  21. Masae M, Sikog L, Rom. J. Mater., 47, 129, 2017
  22. Baruah M, Supong A, Chandra P, Rituparna B, Chubaakum K, Nanotechnol. Environ. Eng., 3, 1, 2020
  23. Teng H, Xu S, Sun D, Zhang Y, Int. J. Photoenergy, 2013, 1, 2013
  24. Babic BM, Milonjic SK, Polovina MJ, Kaludierovi BV, Carbon N. Y., 37, 477, 1999
  25. Thakur M, Sharma G, Ahamad T, Ghfar AA, Pathania D, Naushad M, Colloids Surf. B: Biointerfaces, 157, 456, 2017
  26. Othman SH, Rashid SA, Ghazi TIM, Abdullah N, J. Nanomaterials, 2011, 1, 2011
  27. Song K, Lee S, Suh CY, Kim W, Ko KS, Shin D, Mater. Trans., 53, 2056, 2012
  28. Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B, Appl. Surf. Sci., 462, 549, 2018
  29. Sood S, Umar A, Mehta SK, Kansal SK, J. Colloid Interface Sci., 450, 213, 2015
  30. Belayachi H, Bestani B, Benderdouche N, Belhakem M, Arab. J. Chem., 12, 3018, 2015
  31. Daimon T, Naruse H, Watanabe H, Oda H, Yamanaka A, IOP Conf. Ser. Mater. Sci. Eng., 18, 1 (2011).
  32. Hasibur RK, Kumar KA, Mater. Sci. Semicond. Process, 105, 104745, 2020
  33. Moradi H, Eshaghi A, Hosseini SR, Ghani K, Ultrason. Sonochem., 32, 314, 2016
  34. Li X, Shen RC, Ma S, Chen XB, Xie J, Appl. Surf. Sci., 430, 53, 2018
  35. Robertson JMC, Robertson PKJ, Lawton LA, J. Photochem. Photobiol. A-Chem., 175, 51, 2005
  36. Ghasemi Z, Younesi H, Zinatizadeh AA, J. Taiwan Inst. Chem. Eng., 65, 357, 2016
  37. Mamun K, Asw R, Fahmida K, Appl. Water Sci., 7, 1569, 2017
  38. Sood S, Mehta SK, Umar A, Kansal SK, Ne. J. Chem., 38, 3127, 2014
  39. Kaur S, Singh V, Ultra. Sonochem., 14, 531, 2007
  40. Yun E, Yoo H, Kim W, Kim H, Kang G, Lee H, Lee S, Park T, Lee C, Kim J, Lee J, Appl. Catal. B: Environ., 203, 473, 2017
  41. Eliyas AE, Ljutzkanov L, Stambolova ID, Blaskov VN, Vassilev SV, Razkazova-Velkova EN, Mehandjiev DR, Cent. Eur. J. Chem., 11, 464, 2013
  42. Jothivel S, Velmurugan R, Selvam K, Krishnakumar B, Swaminathan M, Sep. Purif. Technol., 77(2), 245, 2011
  43. Singh A, Bhati A, Khare P, Tripathi KM, Sci. Rep., 9, 1, 2019
  44. Zheng P, Pan Z, Li H, Bai B, Guan W, J. Mater. Sci. Mater. Electron., 26, 6399, 2015
  45. Zhang N, Liu GG, Liu HJ, Wang YL, He ZW, Wang G, J. Hazard. Mater., 192(1), 411, 2011
  46. Srinivasan NR, Shankar PA, Bandyopadhyaya R, Carbon N. Y., 57, 1, 2013
  47. Boonyod S, Sutthisripok W, Sikong L, AAPG Bull., 214, 197, 2011
  48. Yadav HM, Otari SV, Bohara RA, Pawar SH, Delekar SD, J. Photochem. Photobiol. A-Chem., 294, 130, 2014
  49. Ibrahim HMM, World J. Microbiol. Biotechnol., 31, 1049, 2015
  50. Wang W, Yu JC, Wong PK, Mater. Sci. Forum, 734, 63, 2019
  51. Chen Q, Li J, Wu Y, Shen F, Yao M, Rsc Adv., 3, 13835, 2013
  52. Huang S, Zhao Y, Xu H, Li H, Acs. Sustainable. Chm., 6, 11968, 2018
  53. Jeong J, Kim KY, Yoon J, Environ. Sci. Technol., 40, 6117, 2006
  54. Karbasi M, Karimzadeh F, Raeissi K, Rtimi S, Kiwi J, Giannakis S, Pulgarin C, Water, 12, 1099, 2020
  55. Taghizadeh MT, Siyahi V, Ashassi-Sorkhabi H, Zarrini G, Int. J. Biol. Macromol., 147, 1018, 2020
  56. Foster HA, Ditta IB, Varghese S, Steele A, Appl. Microbiol. Biotechnol., 90(6), 1847, 2011
  57. Fu GF, Vary PS, Lin CT, J. Phys. Chem. B, 109(18), 8889, 2005
  58. Caballero L, Whitehead KA, Allen NS, Verran J, J. Photochem. Photobiol. A-Chem., 202, 92, 2009
  59. Adams LK, Lyon DY, Alvarez PJJ, Water Res., 40, 3527, 2006
  60. Daneshvar N, Aleboyeh A, Khataee AR, Chemosphere, 59, 761, 2005
  61. Behnajady MA, Eskandarloo H, Shokri M, Dig. J. Nanomater. Biostructures, 6, 1887, 2011
  62. Vishnuganth MA, Remya N, Kumar M, Selvaraju N, J. Environ. Manage., 181, 201, 2016
  63. Foura G, Chouchou N, Soualah A, Kouachi K, Guidotti M, Robert D, Catalysts, 7, 1, 2017
  64. Nagargoje R, Atalay S, Ersoz GA, Palas B, Bombay Technol., 64, 45, 2014
  65. Taghvaei H, Farhadian M, Davari N, Maazi S, Adv. Environ. Technol., 3, 205, 2017
  66. Meng ZD, Zhang K, Oh WC, J. Korean Cryst. Growth Cryst. Technol., 19, 268, 2009
  67. Youji LI, Jing LI, Mingyuan MA, Yuzhu O, Wenbin YAN, Sci. China Ser. B-Chem., 52, 1113, 2009
  68. Jorfi S, Mirali S, Mostoufi A, Ahmadi M, Chem. Biochem. Eng. Q., 32, 215, 2018