Issue
Korean Journal of Chemical Engineering,
Vol.38, No.6, 1240-1247, 2021
The role of contact time and input amount of 1,1,1,2-tetrafluoroethane (HFC-134a) on the catalyst lifetime and product selectivity in catalytic pyrolysis
During catalytic pyrolysis of HFC-134a over γ-alumina, the formation of HF and coke causes catalyst deactivation. Catalyst deactivation and product selectivity depend on the contact time during catalytic pyrolysis of HFC-134a as reported in this paper. γ-Alumina calcined at 650 °C was used as the catalyst due to its higher quantity of acidic sites and larger surface area, which are crucial for catalytic pyrolysis. X-ray diffraction (XRD), scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDS), and thermogravimetric analysis (TGA) of the catalysts were performed to determine the influence of contact time and flow rate of HFC-134a. 2mL/min of HFC-134a balanced with nitrogen to 25, 50, 100, and 200mL/min total flow rates was studied at 600 °C. 200mL/min showed a 9.4 h catalyst lifetime with a small number of by-products. Shorter contact time between HFC-134a and HF with the catalyst was found to be the key to the longer lifetime of the catalyst. The catalyst lifetime was decreased with an increase in the HFC-134a input amount. Among 2, 4, and 6mL/min input of HFC-134a, 2mL/min showed the longest catalytic activity followed by 4 and 6mL/min, respectively. Conversion of γ-alumina into AlF3 and deposition of coke were responsible for the deactivation.
[References]
  1. Wuebbles DJ, Easterling DR, Hayhoe K, et al., U.S. Global Change Research Program, Washington, DC, USA, pp. 35 2017.
  2. Srinivasan J, Resonance, 13(12), 1146, 2008
  3. IPCC,Geneva, Switzerland, 151 pp. 2014.
  4. https://ec.europa.eu/clima/policies/strategies/progress/kyoto_2_en (accessed Sep. 21, 2020).
  5. Velders GJM, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S, Science, 335(6071), 922, 2012
  6. Molina MJ, Rowland FS, Nature, 249, 810, 1974
  7. https://ozone.unep.org/treaties/montreal-protocol (accessed Oct. 07, 2020).
  8. Myhre G, Shindell D, Breon FM, Collins W, et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2013.
  9. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (accessed Oct. 28, 2020).
  10. UNFCCC, CDM Methodology Booklet, 2019.
  11. Shin M, Jang D, Lee Y, Kim Y, Kim E, J. Mater. Cycles Waste Manag., 19(2), 754, 2017
  12. Han W, Li Y, Tang H, Liu H, J. Fluor. Chem., 140, 7, 2012
  13. Ohno M, Ozawa Y, Ono T, Int. J. Plasma Environ. Sci. Technol., 1(2), 159, 2007
  14. Gandhi MS, Mok YS, Int. J. Environ. Sci. Technol., 12(2), 499, 2013
  15. Wang YF, Lee WJ, Chen CY, Hsieh LT, Ind. Eng. Chem. Res., 38(9), 3199, 1999
  16. Takita Y, Tanabe T, Ito M, Ogura M, Muraya T, Yasuda S, Nishiguchi H, Ishihara T, Ind. Eng. Chem. Res., 41(11), 2585, 2002
  17. El-Bahy ZM, Ohnishi R, Ichikawa M, Appl. Catal. B: Environ., 40(2), 81, 2003
  18. Iizuka A, Ishizaki H, Mizukoshi A, Noguchi M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 50(21), 11808, 2011
  19. Han TU, Yoo BS, Kim YM, Hwang, Sudibya GL, Park YK, Kim SD, Korean J. Chem. Eng., 35(8), 1611, 2018
  20. Xu XF, Jeon JY, Choi MH, Kim HY, Choi WC, Park YK, J. Mol. Catal. A-Chem., 266(1-2), 131, 2007
  21. Han W, Chen Y, Jin B, Liu H, Yu H, Greenh. Gases Sci. Technol., 4(1), 121, 2014
  22. Song JY, Chung SH, Kim MS, Seo MG, Lee YH, Lee KY, Kim JS, J. Mol. Catal. A-Chem., 370, 50, 2013
  23. Jia W, Liu M, Lang X, Hu C, Li J, Zhu Z, Catal. Sci. Technol., 5(6), 3103, 2015
  24. Swamidos CMA, Sheraz M, Anus A, Jeong SJ, Park Y, Kim Y, Kim S, Catalysts, 9(3), 270, 2019
  25. Jia WZ, Wu Q, Lang XW, Hu C, Zhao GQ, Li JH, Zhu ZR, Catal. Lett., 145(2), 654, 2015
  26. Ryu J, No K, Kim Y, Park E, Hong S, Sci. Rep., 6, 36176, 2016
  27. Higashi Y, Sakoda N, Islam MA, Takata Y, Koyama S, Akasaka R, J. Chem. Eng. Data, 63(2), 417, 2018
  28. Yaghobi N, J. King Saud Univ. - Eng. Sci., 25(1), 1, 2013
  29. Acikalin K, Karaca F, Bolat E, Fuel, 95, 169, 2012
  30. Yang H, Coolman R, Karanjkar P, Wang H, Dornath P, Chen H, Fan W, Conner WC, Mountziaris TJ, Huber G, Green Chem., 19(1), 286, 2017
  31. Li HY, Yan YJ, Ren ZW, J. Fuel Chem. Technol., 36(6), 666, 2008
  32. Aho A, Tokarev A, Backman P, Kumar N, Eranen K, Hupa M, Holmbom B, Salmi T, Murzin DY, Top. Catal., 54, 941, 2011
  33. Putun E, Energy, 35(7), 2761, 2010
  34. Jeong SJ, Sudibya GL, Jeon J, Kim Y, Swamidoss CMA, Kim S, Catalysts, 9(11), 901, 2019
  35. Tseng WJ, Chao PS, Ceram. Int., 39, 3779, 2013
  36. Spurr RA, Myers H, Anal. Chem., 29, 760, 1957
  37. Jeon JY, Xu XF, Choi MH, Kim HY, Park YK, Chem. Commun., 3, 1244, 2003
  38. Krahl T, Kemnitz E, Catal. Sci. Technol, 7(4), 773, 2017
  39. Xi Z, Liu X, Li J, Yuan J, Jia W, Liu X, Liu M, Zhu Z, ChemistrySelect, 4(15), 4506, 2019
  40. Kim M, Kim Y, Youn J, Choi I, Hwang K, Kim SG, Park Y, Moon S, Lee KB, Jeon S, Catalysts, 10(7), 766, 2020