Issue
Korean Journal of Chemical Engineering,
Vol.38, No.6, 1188-1196, 2021
CO2 hydrogenation activity of Ni-Mg-Al2O3 catalysts: Reaction behavior on NiAl2O4 and MgAl2O4
CO2 hydrogenation activity of nickel-magnesium-aluminum mixed oxide catalysts was investigated. As Ni concentration increased, CO2 conversion increased due to the increased active metal content and suppression of NiAl2O4 formation. Calcination temperature was found to affect the textural properties of catalysts and to decrease surface area and pore volume significantly. Therefore, catalysts calcined at a relatively low temperature showed high activity, while the particle strength slightly decreased with the reduced calcination temperature. The catalytic activity of reduced NiAl2O4 and MgAl2O4 spinel oxides for the hydrogenation of CO2 was also investigated. NiAl2O4 dissociated CO2 to C on reduced Ni, and increased CH4 selectivity. On the other hand, CO2 was not fully dissociated, and the CO intermediate was desorbed to produce gaseous CO on reduced MgAl2O4. Adding MgO suppressed the formation of NiAl2O4, but CH4 selectivity decreased due to the formation of MgAl2O4, indicating the amount of MgO added should be optimized depending on the product required.
[References]
  1. Guerrero JM, Blaabjerg F, Zhelev T, Hemmes K, Monmasson E, Jemei S, Comech MP, Granadino RN, Frau JL, IEEE Ind. Electron. Mag., 4(1), 52, 2010
  2. Dincer I, Renew. Sust. Energ. Rev., 4(2), 157, 2000
  3. Edwards RWJ, Celia MA, PNAS, 115(38), E8815, 2018
  4. Al-Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F, Energy Technol., 5, 834, 2017
  5. Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2(1), 9, 2008
  6. Schack D, Rihko-Struckmann L, Sundmacher K, Ind. Eng. Chem. Res., 57(30), 9889, 2018
  7. Barton JP, Infield DG, EEE Trans. Energy Convers, 19(2), 441, 2004
  8. Ancona MA, Antonioni G, Branchini L, De Pascale A, Melino F, Orlandini V, Antonucci V, Ferraro M, Energy Procedia, 101, 854, 2016
  9. Lee B, Lee H, Kang S, Lim H, J. Energy Storage, 24, 100791, 2019
  10. Zhou G, Liu H, Xing Y, Xu S, Xie H, Xiong K, J. CO2 Utilization, 26, 221, 2018
  11. Li MS, Amari H, van Veen AC, Appl. Catal. B: Environ., 239, 27, 2018
  12. Zhang YQ, Jacobs G, Sparks DE, Dry ME, Davis BH, Catal. Today, 71(3-4), 411, 2002
  13. Wang JJ, You ZY, Zhang QH, Deng WP, Wang Y, Catal. Today, 215, 186, 2013
  14. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371, 2016
  15. Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS, Catal. Sci. Technol., 5, 4154, 2015
  16. Stangeland K, Kalai D, Li H, Yu Z, Energy Procedia, 105, 2022, 2017
  17. Weatherbee GD, Bartholomew CH, J. Catal., 77(2), 460, 1982
  18. Lim JY, McGregor J, Sederman AJ, Dennis JS, Chem. Eng. Sci., 141, 28, 2016
  19. Kester KB, Zagli E, Falconer JL, Appl. Catal., 22, 311, 1986
  20. Aksoylu AE, Onsan ZI, Appl. Catal. A: Gen., 164(1-2), 1, 1997
  21. Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Sai Prasad PS, Lim HJ, Byun CD, Korean J. Chem. Eng., 28(12), 2282, 2011
  22. Garbarino G, Riani P, Magistri L, Busca G, RSC Adv., 5, 22759, 2015
  23. Lin J, Ma C, Wang Q, Xu Y, Ma G, Wang J, Wang H, Dong C, Zhang C, Ding M, Appl. Catal. B: Environ., 243, 162, 2019
  24. Rahmani S, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 20(4), 1346, 2014
  25. Meshkani F, Rezaei M, Andache M, J. Ind. Eng. Chem., 20(4), 1251, 2014
  26. Bremer J, Sundmacher K, React. Chem. Eng., 4, 1019, 2019
  27. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  28. Vesselli E, Schweicher J, Bundhoo A, Frennet A, Kruse N, JJ. Phys. Chem. C, 115, 1255, 2011