Issue
Korean Journal of Chemical Engineering,
Vol.38, No.6, 1129-1138, 2021
Dehydrogenation of ethane and subsequent activation of CO2 on hierarchicallystructured bimetallic FeM@ZSM-5 (M=Ce, Ga, and Sn)
The catalytic activity for dehydrogenation of C2H6 and successive CO2 activation was studied by using hierarchically- structured bimetallic FeM/ZSM-5 (M=Ce, Ga, and Sn metal) to verify the redox property of the Fe nanoparticles and metal promoters on the acidic ZSM-5. Based on the surface characteristics, the reducibility and oxygen vacant sites of metal oxides on the ZSM-5 largely altered the reduction-oxidation nature and catalytic cracking behavior. The metal-promoted Fe/ZSM-5, especially with CeO2 promoter on the FeCe/ZSM-5, revealed excellent redox cycles and higher steady-state dehydrogenation activity such as a comparable C2H6 conversion of 6.1% as well as C2H4 selectivity of 89.8% at 600 °C with a larger CO production with 9.7mmol/g by CO2 activation at 700 °C. This observation was attributed to the incorporated partially reducible CeO2 species by enhancing their interaction with ZSM-5 as well as by easily stabilizing the oxidation states of Ce and Fe metal oxides with its higher thermal stability during C2H6 dehydrogenation through an initial oxidative dehydrogenation followed by a steady-state catalytic cracking and subsequent CO2 activation to CO.
[References]
  1. (a) Dixit M, et al., ACS Catal., 8, 11570 (2018); (b) He Y, et al., ACS Catal., 9, 10464 (2019); (c) Gao Y, et al., ACS Catal., 9, 8592 (2019).
  2. (a) Yusuf S, et al., Appl. Catal. B., 257, 117885 (2019); (b) Li X, et al., Catal. Today, 276, 62 (2016).
  3. (a) He C, You F, Ind. Eng. Chem. Res., 53, 11442 (2014); (b) Yang M, et al., Ind. Eng. Chem. Res., 57, 5980 (2018); (c) Zhao ZJ, et al., Angew. Chem. Int. Ed., 57, 6791 (2018).
  4. (a) Solowey DP, et al., Nat. Chem., 9, 1126 (2017); (b) Li H, et al., ACS Catal., 6, 4536 (2016).
  5. Yusuf S, Neal L, Bao Z, Wu Z, Li F, ACS Catal., 9, 3174, 2019
  6. Haribal VP, Neal LM, Li FX, Energy, 119, 1024, 2017
  7. Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257, 2018
  8. Yun YS, Lee M, Sung J, Yun D, Kim TY, Park H, Lee KR, Song CK, Kim Y, Lee J, Seo YJ, Song IK, Yi J, Appl. Catal. B: Environ., 237, 554, 2018
  9. Skoufa Z, Heracleous E, Lemonidou AA, J. Catal., 322, 118, 2015
  10. (a)Porosoff MD, et al., Angew. Chem. Int. Ed., 54, 15501 (2015); (b) Gomez E, et al., J. Am. Chem, Soc., 141, 17771 (2019).
  11. (a) Yao S, et al., ACS Catal., 8, 5374 (2018); (b) Gomez E, et al., AIChE J., 65, e16670 (2019).
  12. (a) Neal LM, et al., Science, 19, 894 (2019); (b) Neal LM, et al., Energy Technol., 4, 1200 (2016).
  13. Wang LC, Zhang Y, Xu J, Diao W, Karakalos S, Liu B, Song X, Wu W, He T, Ding D, Appl. Catal. B: Environ., 256, 117816, 2019
  14. (a) Schreiber MW, et al., J. Am. Chem, Soc., 140, 4849 (2018); (b) Samanta A, et al., Ind. Eng. Chem. Res., 56, 11006 (2017); (c) Choi SW, et al., J. Catal., 345, 113 (2017).
  15. Pidko EA, Kazansky VB, Hensen EJM, van Santen RA, J. Catal., 240(1), 73, 2006
  16. Yun JH, Lobo RF, J. Catal., 312, 263, 2014
  17. Zhang Y, Zhou Y, Qiu A, Wang Y, Xu Y, Wu P, Catal. Commun., 7(11), 860, 2006
  18. Huang H, Zhu H, Zhang Q, Li C, Korean J. Chem. Eng., 36(2), 210, 2019
  19. Chen X, Qiao M, Xie S, Fan K, Zhou W, He H, J. Am. Chem. Soc., 129(43), 13305, 2007
  20. Saeidi M, Hamidzadeh M, Res. Chem. Intermed., 43, 2143, 2017
  21. Feng R, Yan X, Hu X, Zhang Y, Wu J, Yan Z, Appl. Catal. A: Gen., 594, 117464, 2020
  22. Mohamed RM, Aly HM, El-Shahat MF, Ibrahim IA, Microporous Mesoporous Mater., 79, 7, 2005
  23. van de Water LGA, van der Waal JC, Jansen JC, Cadoni M, Marchese L, Maschmeyer T, J. Phys. Chem. B, 107(38), 10423, 2003
  24. Cui X, Zhu Y, Hua Z, Feng J, Liu Z, Chen L, Shi J, Energy Environ. Sci., 8, 1261, 2015
  25. (a) Zhang Y, et al., RSC Adv., 6, 29410 (2016); (b) Kasipandi S, Bae JW, Adv. Mater., 31, 1803390 (2019).
  26. Sarshar Z, Sun ZK, Zhao DY, Kaliaguine S, Energy Fuels, 26(5), 3091, 2012
  27. Zhu JJ, Zhao Z, Xiao DH, Li J, Yang XG, Wu Y, J. Mol. Catal. A-Chem., 238(1-2), 35, 2005
  28. Jeong MH, Sun J, Han GY, Lee DH, Bae JW, Appl. Catal. B: Environ., 270, 118887, 2020
  29. Jeong MH, Lee DH, Han GY, Shin CH, Shin MK, Ko CK, Bae JW, Fuel, 202, 547, 2017
  30. Yuan E, Wu G, Dai W, Guan N, Li L, Catal. Sci. Technol., 7, 3036, 2017
  31. Lai Y, Veser G, Catal. Sci. Technol., 6, 5440, 2016
  32. (a) Feng T, Vohs JM, J. Catal., 221, 619 (2004); (b) Li CL, Lin YC, Appl. Catal. B., 107, 284 (2011).
  33. Wang C, Shi HS, Li Y, Appl. Surf. Sci., 257(15), 6873, 2011
  34. Freire L, Novoa XR, Montemor MF, Carmezim MJ, Mater. Chem. Phys., 114(2-3), 962, 2009
  35. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A, RSC Adv., 3, 7953, 2013
  36. Hassan IA, Sathasivam S, Islam HU, Nair SP, Carmalt CJ, RSC Adv.,, 7, 551, 2017
  37. Chen DK, He DD, Lu JC, Zhong LP, Liu F, Liu JP, Yu J, Wan GP, He SF, Luo YM, Appl. Catal. B: Environ., 218, 249, 2017
  38. Lei TQ, Miao CX, Hua WM, Yue YH, Gao Z, Catal. Lett., 148(6), 1634, 2018