Issue
Korean Journal of Chemical Engineering,
Vol.38, No.6, 1117-1128, 2021
Recent progress on Al distribution over zeolite frameworks:Linking theories and experiments
The location and distribution of aluminum in zeolites is considered important in determining various properties, such as acidity and reactivity. Controlling the placement of aluminum substitution has therefore been of significant interest, and a number of studies have been conducted, including synthesis methods using either different organic structure-directing agents (OSDAs) or cationic species, and the application of dealumination as post-processing. In addition to experimental developments, computational methods have emerged as a useful tool for analyzing the effects of different types of aluminum siting on catalytic properties, especially by incorporating statistical methods. A review of recent developments and findings related to aluminum siting and its effects is presented in this work. Analysis of the thermodynamic distribution of aluminum, as well as synthetically altered distribution in different zeolite frameworks, has been discussed. Computational studies have revealed that catalytic properties are sensitive to adsorbate-dependent properties such as the size of rings and voids for the residence of aluminum, the relative distribution of acid sites, and the adsorption properties of molecules in different framework motifs. Along with the atomic scale evaluation of synthetic treatments in positioning the aluminum, cases of instrumental analysis methods and their verification with simulations is discussed, demonstrating how theories have complemented and, sometimes modified, experimental perspectives. Lastly, recent progress in incorporating machine learning techiques, its application to zeolites, and directions for future work are introduced.
[References]
  1. Breck DW, in Molecular sieve zeolites-I, ACS Publications, Washington D.C. (1971).
  2. Baerlocher C, McCusker LB, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).
  3. Zhang Q, Yu J, Corma A, Adv. Mater., 2002927, 1, 2020
  4. Chu Y, Han B, Zheng A, Deng F, J. Phys. Chem. C., 116, 12687, 2012
  5. Huang Y, Dong X, Li M, Yu Y, Catal. Sci. Technol., 5, 1093, 2015
  6. Brandle M, Sauer J, J. Am. Chem. Soc., 120(7), 1556, 1998
  7. McQuarrie DA, Statistical Mechanics, 1st Ed., Harper & Row, New York (1973).
  8. Cheung P, Bhan A, Sunley GJ, Iglesia E, Angew. Chem.-Int. Edit., 45, 1617, 2006
  9. Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E, J. Catal., 245(1), 110, 2007
  10. Bhan A, Allian AD, Sunley GJ, Law DJ, Iglesia E, J. Am. Chem. Soc., 129(16), 4919, 2007
  11. Boronat M, Martinez-Sanchez C, Law D, Corma A, J. Am. Chem. Soc., 130(48), 16316, 2008
  12. Li Y, Yu M, Cai K, Wang M, Lv J, Howe RF, Huang S, Ma X, Phys. Chem. Chem. Phys., 22, 11374, 2020
  13. Jung HS, Ham H, Bae JW, Catal. Today, 339, 79, 2020
  14. Ham H, Jung HS, Kim HS, Kim J, Cho SJ, Lee WB, Park MJ, Bae JW, ACS Catal., 10, 5135, 2020
  15. Peric J, Trgo M, Medvidovic NV, Water Res., 38, 1893, 2004
  16. Yahiro H, Iwamoto M, Appl. Catal. A: Gen., 222(1-2), 163, 2001
  17. Albarracin-Suazo SC, Pagan-Torres YJ, Curet-Arana MC, J. Phys. Chem. C, 123, 16164, 2019
  18. Li H, Paolucci C, Khurana I, Wilcox LN, Goltl F, et al., Chem. Sci., 10, 2373, 2019
  19. Loewenstein W, Am. Mineral., 39, 92, 1954
  20. Catlow CRA, George AR, Freeman CM, Chem. Commun., 11, 1311, 1996
  21. Pelmenschikov AG, Paukshtis EA, Edisherashvili MO, Zhidomirov GM, J. Phys. Chem., 96, 7051, 1992
  22. Goncalves TJ, Plessow PN, Studt F, ChemCatChem., 11, 4368, 2019
  23. Zygmunt SA, Curtiss LA, Zapol P, Iton LE, J. Phys. Chem. B, 104(9), 1944, 2000
  24. Kessi A, Delley B, Int. J. Quantum Chem., 68, 135, 1998
  25. Zhou DH, Bao Y, Yang MM, He N, Yang G, J. Mol. Catal. A-Chem., 244(1-2), 11, 2006
  26. He M, Zhang J, Liu R, Sun X, Chen B, Catalysts, 7, 11, 2017
  27. Grajciar L, Arean CO, Pulido A, Nachtigall P, Phys. Chem. Chem. Phys., 12, 1497, 2010
  28. Zhang N, Liu C, Ma J, Li R, Jiao H, Phys. Chem. Chem. Phys., 21, 18758, 2019
  29. Nystrom S, Hoffman A, Hibbitts D, ACS Catal., 8, 7842, 2018
  30. Muraoka K, Chaikittisilp W, Okubo T, J. Am. Chem. Soc., 138(19), 6184, 2016
  31. Xu B, Bordiga S, Prins R, van Bokhoven JA, Appl. Catal. A: Gen., 333(2), 245, 2007
  32. Cui N, Guo H, Zhou J, Li L, Guo L, Hua Z, Microporous Mesoporous Mater., 306, 110411, 2020
  33. Park S, Biligetu T, Wang Y, Nishitoba T, Kondo JN, Yokoi T, Catal. Today, 303, 64, 2018
  34. Di Iorio JR, Nimlos CT, Gounder R, ACS Catal., 7, 6663, 2017
  35. Sastre G, Fornes V, Corma A, J. Phys. Chem. B, 106(3), 701, 2002
  36. Nielsen M, Hafreager A, Brogaard RY, De Wispelaere K, Falsig H, Beato P, Van Speybroeck V, Svelle S, Catal. Sci. Technol., 9, 3721, 2019
  37. Inagaki S, Yamada N, Nishii M, Nishi Y, Kubota Y, Microporous Mesoporous Mater., 302, 110223, 2020
  38. Koranyi TI, Nagy JB, J. Phys. Chem. B, 109(33), 15791, 2005
  39. Stanciakova K, Ensing B, Goltl F, Bulo RE, Weckhuysen BM, Go F, Bulo RE, Weckhuysen BM, ACS Catal., 9, 5119, 2019
  40. Sklenak S, Andrikopoulos PC, Whittleton SR, Jirglova H, Sazama P, Benco L, Bucko T, Hafner J, Sobalik Z, J. Phys. Chem. C, 117, 3958, 2013
  41. Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Novakova J, Benco L, Bucko T, Hafner J, Dedecek J, Sobalik Z, J. Catal., 272(2), 262, 2010
  42. Kim S, Park G, Woo MH, Kwak G, Kim SK, ACS Catal., 9, 2880, 2019
  43. Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R, ACS Catal., 8, 770, 2018
  44. Jones AJ, Iglesia E, ACS Catal., 5, 5741, 2015
  45. O'Malley PJ, Dwyer J, J. Phys. Chem., 92, 3005, 1988
  46. Wang CM, Brogaard RY, Weckhuysen BM, Nørskov JK, Studt F, J. Phys. Chem. Lett., 5, 1516, 2014
  47. Boronat M, Corma A, ACS Catal., 9, 1539, 2019
  48. Evans JD, Coudert FX, Chem. Mater., 29, 7833, 2017
  49. Gu Y, Liu Z, Yu C, Gu X, Xu L, Gao Y, Ma J, J. Phys. Chem. C, 124, 9314, 2020
  50. Helfrecht BA, Semino R, Pireddu G, Auerbach SM, Ceriotti M, J. Chem. Phys., 151, 154112, 2019
  51. Ma X, Xin H, Phys. Rev. Lett., 118, 1, 2017
  52. Calle-Vallejo F, Martinez JI, Garcia-Lastra JM, Sautet P, Loffreda D, Angew. Chem.-Int. Edit., 53, 8316, 2014
  53. Xie T, Grossman JC, Phys. Rev. Lett., 120, 145301, 2018
  54. Gu GH, Noh J, Kim S, Back S, Ulissi Z, Jung Y, J. Phys. Chem. Lett., 11, 44, 2020
  55. Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW, J. Phys. Chem. Lett., 10, 4401, 2019
  56. De S, Bartok AP, Csanyi G, Ceriotti M, Phys. Chem. Chem. Phys., 18, 13754, 2016
  57. Kajita S, Ohba N, Jinnouchi R, Asahi R, Sci. Rep., 7, 1, 2017
  58. Yoon J, Ulissi ZW, Phys. Rev. Lett., 125, 173001, 2020