Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 1059-1065, 2021
Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries
Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5-3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0-4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.
[References]
  1. Tran TH, Harmand S, Desmet B, Filangi S, Appl. Therm. Eng., 63, 551, 2014
  2. Vayrynen A, Salminen J, J. Chem. Thermodyn., 46, 80, 2012
  3. Alaoui C, IEEE Trans. Veh. Technol., 62, 98, 2012
  4. Deng BW, Wang H, Ge WJ, Li X, Yan XX, Chen T, Qu MZ, Peng GC, Electrochim. Acta, 236, 61, 2017
  5. Chen ZQ, Wang J, Huang JX, Fu T, Sun GY, Lai SB, Zhou R, Li K, Zhao JB, J. Power Sources, 363, 168, 2017
  6. Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT, J. Phys. Chem. C, 121, 22628, 2017
  7. Duan JG, Hu GR, Cao YB, Tan CP, Wu C, Du K, Peng ZD, J. Power Sources, 326, 322, 2016
  8. Cho W, Kim SM, Song JH, Yim T, Woo SG, Lee KW, Kim JS, Kim YJ, J. Power Sources, 282, 45, 2015
  9. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS Appl. Mater. Interfaces, 7, 13944, 2015
  10. Qin C, Cao J, Chen J, Dai G, Wu T, Chen Y, Tang Y, Li A, Chen Y, Dalton Trans., 45, 9669, 2016
  11. Wang D, Li XH, Wang ZX, Guo HJ, Xu Y, Fan YL, Electrochim. Acta, 196, 101, 2016
  12. Tao T, Chen C, Yao Y, Liang B, Lu S, Chen Y, Ceram. Int., 43, 15173, 2017
  13. Mao L, Ai L, Li S, Hou Q, Xie Y, Liang Y, Xie J, AIP Conf. Proc., 1944, 020049, 2018
  14. Xu LP, Zhou F, Zhou HB, Kong JZ, Wang QZ, Yan GZ, Electrochim. Acta, 289, 120, 2018
  15. Ran QW, Zhao HY, Hu YZ, Shen QQ, Liu W, Liu JT, Shu XH, Zhang ML, Liu SS, Tan M, Li H, Liu XQ, Electrochim. Acta, 289, 82, 2018
  16. Liang L, Sun X, Zhang J, Hou L, Sun J, Liu Y, Wang S, Yuan C, Adv. Eng. Mater., 9, 180284, 2019
  17. Liang L, Zhang W, Zhao F, Denis DK, Zaman FU, Hou L, Yuan C, Adv. Mater. Interfaces, 7, 190174, 2020
  18. Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X, Angew. Chem.-Int. Edit., 59, 2055, 2020
  19. Kim Y, Cho J, J. Electrochem. Soc., 154(6), A495, 2007
  20. Ma X, Wang C, Han X, Sun J, J. Alloy. Compd., 453, 352, 2008
  21. Song HG, Kim JY, Kim KT, Park YJ, J. Power Sources, 196(16), 6847, 2011
  22. Kim KC, Jegal JP, Bak SM, Roh KC, Kim KB, Electrochem. Commun., 43, 113, 2014
  23. Chong J, Xun S, Zhang J, Song X, Xie H, Battaglia V, Wang R, Chem. Eur. J., 20, 7479, 2014
  24. Bian XF, Fu Q, Bie XF, Yang PL, Qiu HL, Pang Q, Chen G, Du F, Wei YJ, Electrochim. Acta, 174, 875, 2015
  25. Liang L, Sun X, Wu C, Hou L, Sun J, Zhang X, Yuan C, ACS Appl. Mater. Interfaces, 10, 5498, 2018
  26. Ayu NI, Kartini E, Prayogi LD, Faisal M, Ionics, 22, 1051, 2016
  27. Kuwata N, Iwagami N, Tanji Y, Matsuda Y, Kawamura J, J. Electrochem. Soc., 157(4), A521, 2010
  28. Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T, J. Electrochem. Soc., 150(12), A1577, 2003
  29. Lee SW, Kim MS, Jeong JH, Kim DH, Chung KY, Roh KC, Kim KB, J. Power Sources, 360, 206, 2017
  30. Tang ZF, Wu R, Huang PF, Wang QS, Chen CH, J. Alloy. Compd., 693, 1157, 2017
  31. Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X, Appl. Surf. Sci., 504, 144506, 2020
  32. Zhang W, Liang L, Zhao F, Liu Y, Hou L, Yuan C, Electrochim. Acta, 340, 135871, 2020
  33. Liu J, Manthiram A, J. Electrochem. Soc., 156(1), A66, 2009
  34. Zhu X, Shang K, Jiang X, Ai X, Yang H, Cao Y, Ceram. Int., 40, 11245, 2014
  35. Jo CH, Cho DH, Noh HJ, Yashiro H, Sun YK, Myung ST, Nano Res., 8, 1464, 2015
  36. Wang ZY, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ, J. Power Sources, 236, 25, 2013
  37. Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F, ACS Appl. Mater. Interfaces, 9, 27936, 2017
  38. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L, J. Electrochem. Soc., 145(9), 3024, 1998
  39. Spath T, Becker D, Schulz N, Hausbrand R, Jaegermann W, Adv. Mater. Interfaces, 4, 170056, 2017
  40. Zhang JN, Li Q, Wang Y, Zheng J, Yu X, Li H, Energy Storage Mater., 14, 1, 2018
  41. Chen JC, Zhu L, Jia D, Jiang XB, Wu YM, Hao QL, Xia XF, Ouyang Y, Peng LM, Tang WP, Liu T, Electrochim. Acta, 312, 179, 2019
  42. Hata JI, Hirayama M, Suzuki K, Dupre N, Guyomard D, Kanno R, Batter. Supercaps, 2, 454, 2019
  43. Morgan WE, Van Wazer JR, Stec WJ, J. Am. Chem. Soc., 95, 751, 1973
  44. Contour J, Salesse A, Froment M, Garreau M, Thevenin J, Warin D, J. Microsc. Spect. Elec., 4, 483, 1979