Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 1043-1051, 2021
Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption
The performance of carbon molecular sieves and zeolite 5A was compared in a four-bed vacuum pressure swing adsorption process. The purpose of the process is to sequester CO2 from a CH4/CO2 mixture gas, such as coal bed methane or landfill gas. This study investigated the effects of the design variables and operating variables on methane purity, recovery, and specific power through simulations of the process using the two adsorbents. The adopted design variables for the investigation are the packing bed length and the diameter of the adsorption bed, and the selected operating variables are the adsorption pressure and vacuum pressure. The simulation results show that zeolite 5A is better than carbon molecular sieve in terms of power, especially under low-pressure operating conditions with a vacuum pressure of 1,000 Pa. However, carbon molecular sieves are better in terms of purity enhancement when the vacuum pressure is higher than approximately 2,000 Pa.
[References]
  1. Lu JG, Cheng MD, Ji Y, Hui Z, J. Fuel Chem. Technol., 37(6), 740, 2009
  2. Casas N, Schell J, Joss L, Mazzotti M, Sep. Purif. Technol., 104, 183, 2013
  3. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497, 2013
  4. Sun WN, Shen YH, Zhang DH, Yang HW, Ma H, Ind. Eng. Chem. Res., 54(30), 7489, 2015
  5. Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714, 1993
  6. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591, 1995
  7. Jee JG, Lee SJ, Moon HM, Lee CH, Adsorption, 11, 415, 2005
  8. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571, 2003
  9. Kim MB, Bae YS, Choi DK, Lee CH, Ind. Eng. Chem. Res., 45(14), 5050, 2006
  10. Canevesi RLS, Andreassen KA, da Silva EA, Borba CE, Grande CA, Ind. Eng. Chem. Res., 57(23), 8057, 2018
  11. Alonso-Vicario A, Ochoa-Gomez JR, Gil-Rio S, et al., Microporous Mesoporous Mater., 134(1-3), 100, 2010
  12. Montanari T, Finocchio E, Salvatore E, Garuti G, Giordano A, Pistarino C, Busca G, Energy, 36(1), 314, 2011
  13. Mofarahi M, Shokroo EJ, Pet. Coal, 55(3), 216, 2013
  14. Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5, 349, 2014
  15. Shokroo EJ, Farsani DJ, Meymandi HK, Yadollahi N, Korean J. Chem. Eng., 33(4), 1391, 2016
  16. Knaebel SP, Ko D, Biegler LT, Adsorption, 11, 615, 2005
  17. Jiang L, Biegler LT, Fox VG, AIChE J., 49(5), 1140, 2003
  18. Jiang L, Fox VG, Biegler LT, AIChE J., 50(11), 2904, 2004
  19. Jiang L, Biegler LT, Fox VG, Comput. Chem. Eng., 29(2), 393, 2005
  20. Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 42(2), 339, 2003
  21. Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 44(21), 8084, 2005
  22. Nikolic D, Giovanoglou A, Georgiadis MC, Kikkinides ES, Ind. Eng. Chem. Res., 47(9), 3156, 2008
  23. Agarwal A, Biegler LT, Zitney SE, Ind. Eng. Chem. Res., 48(5), 2327, 2009
  24. Kim S, Ko D, Moon I, Ind. Eng. Chem. Res., 55(48), 12444, 2016
  25. Ko Daeho, Ind. Eng. Chem. Res., 55(33), 8967, 2016
  26. Ko D, Ind. Eng. Chem. Res., 55(4), 1013, 2016
  27. Process Systems Enterprise, gPROMS, 1997-2017, www.psenterprise.com/gPROMS.
  28. Delgado JA, Rodrigues AE, Chem. Eng. Sci., 64, 4452, 2008
  29. Ahn EA, Master Dissertation, Korea University, Republic of Korea (2006).