Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 1023-1031, 2021
Experimental and modeling studies for intensification of mercaptans extraction from LSRN using a microfluidic system
We investigated the performance of a T-type microchannel for mercaptan extraction from light straightrun naphtha (LSRN) with sodium hydroxide solution. The aim of this work is to introduce the microfluidic system as a potential tool for mercaptan extraction from light petroleum products. Modeling the extraction process of mercaptan from LSRN has not been carried out previously. In this regard, mercaptan extraction was modeled by response surface methodology (RSM) and artificial neural network (ANN) to analyze the effect of operating parameters on the mercaptan extraction process. The independent variables are considered as temperature, sodium hydroxide concentration, and the volume ratio of sodium hydroxide to LSRN. Two models were compared based on error analysis of the predicted data. Root mean square error, mean relative error, and determination coefficient for the neural network were 0.5650, 0.4341, and 0.9862, respectively. The values of these parameters for the RSM model were 0.6854, 0.7648, and 0.9798. The results showed that the prediction accuracy for both models is appropriate, but the precision of the neural network model is slightly higher than that of the RSM model. The genetic algorithm (GA) technique determined the optimal values of the independent variables with the aim of maximizing the extraction percentage. The mercaptan extraction percentage value of 85.08% was achieved at 303.15 K, the sodium hydroxide concentration of 20 wt%, and the volume ratio of sodium hydroxide to LSRN of 0.128. Furthermore, results showed a higher mercaptan extraction percentage of the microfluidic system compared to a conventional extractor at the same process condition.
[References]
  1. Khalkhali M, Ghorbani A, Bayati B, Polyhedron, 171, 403, 2019
  2. Yabroff D, Ind. Eng. Chem., 32, 257, 1940
  3. Basu B, Satapathy S, Bhatnagar A, Catal. Rev. Sci. Eng., 35, 571, 1993
  4. Barzamini R, Falamaki C, Mahmoudi R, Fuel, 130, 46, 2014
  5. Liu Q, Ke M, Yu P, Liu F, Hu H, Li C, Korean J. Chem. Eng., 35(1), 137, 2018
  6. Ehsani MR, Safadoost AR, Avazzadeh R, Barkhordari A, Iran. J. Chem. Chem. Eng., 32, 71, 2013
  7. LaFoy CJ, US Patent, 4,705,620 (1985).
  8. Liu R, Xia D, Xiang Y, Tian Y, Pet. Sci. Technol., 23, 711, 2005
  9. Afshar AS, Hashemi SR, Miri M, Setayeshi P, Pet. Sci. Technol., 31, 2364, 2013
  10. Ganguly S, Rathi N, Jain A, Pet. Sci. Technol., 31, 1283, 2013
  11. Shahrak MN, Ebrahimzadeh E, Shahraki F, Energy Sources Part A-Recovery Util. Environ. Eff., 37(8), 791, 2015
  12. Amani P, Amani M, Hasanvandian R, Korean J. Chem. Eng., 34(5), 1456, 2017
  13. Parvareh A, Iran. J. Chem. Eng., 14, 55, 2017
  14. Akopyan A, Andreev B, Anisimov A, Eseva E, Tarakanova A, Ustinov A, Kleimenov A, Kondrashev D, Khrapov D, Esipenko R, Russ. J. Appl. Chem., 92, 865, 2019
  15. Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH, Korean J. Chem. Eng., 28(3), 633, 2011
  16. Sotowa KI, Miyoshi R, Lee CG, Kang Y, Kusakabe K, Korean J. Chem. Eng., 22(4), 552, 2005
  17. Kashid MN, Gupta A, Renken A, Kiwi-Minsker L, Chem. Eng. J., 158(2), 233, 2010
  18. Singh KK, Renjith AU, Shenoy KT, Chem. Eng. Process., 98, 95, 2015
  19. Zhang L, Xie F, Li S, Yin S, Peng J, Ju S, Green Process. Synth., 4, 3, 2015
  20. Dai S, Luo JH, Li J, Zhu XH, Cao Y, Komarneni S, Ind. Eng. Chem. Res., 56(44), 12717, 2017
  21. Al-Azzawi M, Mjalli FS, Al-Hashmi A, Al-Wahaibi T, Abu-jdayil B, Chem. Eng. Process., 140, 43, 2019
  22. Chen X, Li T, Hu Z, Microsyst. Technol., 23, 2649, 2017
  23. Chen X, Shen J, Int. J. Heat. Mass. Transfer, 106, 593, 2017
  24. Darekar M, Sen N, Singh K, Mukhopadhyay S, Shenoy K, Ghosh S, Hydrometallurgy, 144, 54, 2014
  25. Talebi A, Teng TT, Alkarkhi AF, Norli I, Low LW, Desalination. Water. Treat., 47, 334, 2012
  26. Asadollahzadeh M, Tavakoli H, Torab-Mostaedi M, Hosseini G, Hemmati A, Talanta, 123, 25, 2014
  27. Karmakar M, Mahapatra M, Singha NR, Korean J. Chem. Eng., 34(5), 1416, 2017
  28. Yildiz S, Korean J. Chem. Eng., 34(9), 2423, 2017
  29. Kim BM, Choi YJ, Choi JH, Shin YH, Lee SH, Korean J. Chem. Eng., 37(1), 1, 2020
  30. Uslu S, Fuel, 276, 117990, 2020
  31. UOP163-10, Hydrogen Sulfide and Mercaptan Sulfur in Liquid Hydrocarbons by Potentiometric Titration, ASTM International, West Conshohocken, PA, 2010.
  32. Afshar AS, Hashemi SR, Int. J. Chem. Biomol. Eng., 79, 2011
  33. Filiz M, Sayar N, Sayar A, Hydrometallurgy, 81, 167, 2006
  34. Daham GR, AbdulRazak AA, Hamadi AS, Mohammed AA, Korean J. Chem. Eng., 34(9), 2435, 2017
  35. Fazlali A, Koranian P, Beigzadeh R, Rahimi M, Korean J. Chem. Eng., 30(9), 1681, 2013
  36. Izadi M, Rahimi M, Beigzadeh R, Chem. Eng. J., 356, 570, 2019
  37. Rahimi M, Hajialyani M, Beigzadeh R, Alsairafi AA, Chem. Eng. Res. Des., 98, 147, 2015
  38. Sahraie H, Mirani MR, Ahmadi MH, Ashouri M, Energy Conv. Manag., 99, 81, 2015
  39. Mirani MR, Rahimpour F, J. Chromatogr. A, 1422, 170, 2015