Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 997-1005, 2021
Platform chemicals production from lipid-extracted Chlorella vulgaris through an eco-friendly catalyst
Microalgae are a widely available, renewable, and sustainable resource for bioenergy which may be used as a carbon-neutral alternative. We conducted hydrothermal conversion with MSA to obtain levulinic (LA) and formic acids (FA) from the lipid-extracted Chlorella vulgaris. Based on our analysis of reciprocal interactions between reaction conditions, maximum LA yields were obtained at high temperature, mid-range catalyst concentration, and mid-/longrange reaction time. Maximum FA yields were obtained at high temperature, high-range acid concentration, and short-/ mid-range time. Using the Box-Behnken method to optimize the reaction, yields of 39.17% for LA and 20.19% for FA were obtained with 5% biomass, 0.5M MSA at 195 °C for 35 min. Moreover, the effect of CSF on yield of LA and FA could be suitably represented by Sigmoidal equations with high R2. Overall, the application of lipid-extracted microalgae residue and eco-friendly MSA may prove useful for platform chemicals production.
[References]
  1. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548, 2015
  2. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  3. Park M, Kim S, Jeong G, Algal Res., 31, 116, 2018
  4. Werpy TA, Holladay JE, White JF, National Renewable Energy Laboratory: Golden, CO (2004).
  5. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143, 2015
  6. Bozell JJ, Petersen GR, Green Chem., 12(4), 539, 2010
  7. Kamm B, Gruber PR, Kamm M, Biorefineries-industrial processes and products, Wiley-VCH Weinheim (2006).
  8. Hayes G, Becer CR, Polym. Chem., 11, 4068, 2020
  9. Liu X, Li S, Liu Y, Cao Y, Chin. J. Catal., 36(9), 1461, 2015
  10. Yun J, Li W, Xu Z, Jin FM, Open J. Adv. Mater. Res., 860, 485, 2014
  11. Yun J, Jin F, Kishita A, Tohji K, Enomoto H, J. Phys. Conference Series, 215(1), 012126, 2010
  12. Joo F, ChemSusChem, 1(10), 805, 2008
  13. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115, 2018
  14. Rackemann DW, Doherty WO, Biofuel. Bioprod. Bior., 5(2), 198, 2011
  15. Moens L, Proceedings of the 2002 Sugar Processing Research Conference held in New Orleans, USA, 26 (2002).
  16. Ho SH, Li PJ, Liu CC, Chang JS, Bioresour. Technol., 145, 142, 2013
  17. Wang JJ, Tan ZC, Zhu CC, Miao G, Kong LZ, Sun YH, Green Chem., 18(2), 452, 2016
  18. Jeong G, Kim S, Oh B, Algal Res., 51, 102044, 2020
  19. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS, Bioresour. Technol., 135, 191, 2013
  20. Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386, 2015
  21. Jeong G, Kim S, Bioresour. Technol, 313, 123684, 2020
  22. Rihko-Struckmann LK, Oluyinka O, Sahni A, McBride K, Fachet M, Ludwig K, Sundmacher K, RSC Adv., 10(42), 24753, 2020
  23. Singh J, Gu S, Renew. Sust. Energ. Rev., 14(9), 2596, 2010
  24. Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP, J. Exp. Bot., 66(14), 4097, 2015
  25. Safi C, Zebib B, Merah O, Pontalier P, Vaca-Garcia C, Renew. Sust. Energ. Rev., 35, 265, 2014
  26. Seon G, Joo HW, Kim YJ, Park J, Chang YK, Biotechnol. Prog., 35, e2729, 2019
  27. Liang YN, Sarkany N, Cui Y, Biotechnol. Lett., 31(7), 1043, 2009
  28. Wu H, Li J, Liao Q, Fu Q, Liu Z, Energy Conv. Manag., 205, 112373, 2020
  29. Kim T, Oh Y, Lee JW, Chang YK, Algal Res., 26
  30. Amoah J, Hasunuma T, Ogino C, Kondo A, Biochem. Eng. J., 142, 117, 2019
  31. Kim MJ, Yang JW, Kim BR, Lee JW, Korean J. Chem. Eng., 37(11), 1933, 2020
  32. Gernon M, Green Chem., 1(3), 127, 1999
  33. Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46, 2014
  34. Kim HS, Kim SK, Jeong GT, J. Ind. Eng. Chem., 63, 48, 2018
  35. Rackemann DW, Bartley JP, Harrison MD, Doherty WO, RSC Adv., 6(78), 74525, 2016
  36. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290, 2018
  37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Sponsored by the US Department of Energy (2012).
  38. Jeong GT, Yang HS, Park DH, Bioresour. Technol., 100(1), 25, 2009
  39. Jeong GT, Kim SK, Korean J. Chem. Eng., 37(10), 1743, 2020
  40. Pedersen M, Meyer AS, New Biotechnol., 27(6), 739, 2010
  41. Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232, 2018
  42. Bjerre AB, Soerensen E, Ind. Eng. Chem. Res., 31(6), 1574, 1992
  43. van Zandvoort I, Wang Y, Rasrendra CB, van Eck ER, Bruijnincx PC, Heeres HJ, Weckhuysen BM, ChemSusChem, 6(9), 1745, 2013
  44. Mthembu LD, Durban University of Technology (2015).
  45. Kim HS, Kim SK, Jeong GT, RSC Adv., 8, 3198, 2018
  46. Hoang TMC, Lefferts L, Seshan K, ChemSusChem, 6, 1651, 2013