Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 975-981, 2021
N-isopropyl acrylamide/sodium acrylate hydrogel as draw agent for forward osmosis to concentrate esterification wastewater
In recent years, a temperature-sensitive hydrogel was reported as a promising draw agent in forward osmosis (FO) technology. PEG, acts as porogen, as an enabler to improve the swelling property of hydrogels. From FO test, the addition of porogen to the hydrogel can improve the water flux of FO by increasing the swelling properties of the hydrogel. And the hydrogel modified with porogen improves the concentration efficiency of wastewater from 1.09 to 1.124 times, indicating that the modification of the hydrogel by the porogen has positive significance for FO technology. In this study, an advanced hydrogel was synthesized via physical copolymerization by using N-isopropylacrylamide and sodium acrylate. The internal structure was investigated by SEM test where it was found that that porogens have different mechanisms of action on hydrogel performance: Porogen affects the swelling property of hydrogel by changing the internal network structure through physical “occupation”. The effect of porogen concentration is to act on the porosity of hydrogel, while the main effect of the molecular weight of porogen on the hydrogel structure is by altering the pore size.
[References]
  1. Eslahi N, Abdorahim M, Simchi A, Biomacromolecules, 17(11), 3441, 2016
  2. Li M, Wang H, Hu J, Hu J, Zhang S, Yang Z, Li Y, Cheng Y, Chem. Mater., 31(18), 7678, 2019
  3. Li X, Su X, J. Mater. Chem. B, 6, 4714, 2018
  4. Wang Y, Dong C, Zhang D, Ren P, Li L, Li X, Int. J. Min. Met. Mater., 22, 998, 2015
  5. James R, Laurencin CT, Rare Metals, 34, 143, 2015
  6. Duan JJ, Zhang LN, Chin. J. Polym. Sci., 35, 1165, 2017
  7. Corpart JM, Candau F, Macromolecules, 26, 1333, 1993
  8. Begam T, Nagpal AK, Singhal R, J. Appl. Polym. Sci., 89(3), 779, 2003
  9. Li X, Li Q, Xu X, Su Y, Yue Q, Gao B, J. Taiwan Inst. Chem. E, 60, 564, 2016
  10. Lin YK, Sharma R, Ma H, Chen WS, Yao CL, J. Taiwan Inst. Chem. E., 20, 1, 2017
  11. Fucinos C, Fucinos P, Miguez M, Katime I, Pastrana LM, Rua ML, Plos One, 9, e87190, 2014
  12. Wang W, Guo Y, Liu M, Song X, Duan J, Korean J. Chem. Eng., 37(9), 1573, 2020
  13. Yang Q, Lei J, SunDD, Chen D, Sep. Purif. Rev., 45, 93, 2016
  14. Chekli L, Phuntsho S, Shon HK, Vigneswaran S, Kandasamy J, Chanan A, Desalin. Water Treat., 43, 167, 2012
  15. Mansouri S, Khalili S, Peyravi M, Jahanshahi M, Darabi RR, Ardeshiri F, Rad AS, Korean J. Chem. Eng., 35(11), 2256, 2018
  16. Li D, Zhang X, Yao J, Simon GP, Wang H, Chem. Commun, 47, 1710, 2011
  17. Ou RW, Wang YQ, Wang HT, Xu TW, Desalination, 318, 48, 2013
  18. Ge Q, Su J, Amy GL, Chung TS, Water Res., 46, 1318, 2012
  19. Li D, Wang H, J. Mater. Chem. A, 1, 14049, 2013
  20. Shakeri A, Nakhjiri MT, Salehi H, Ghorbani F, Khankeshipour N, J. Water Process Eng., 24, 42, 2018
  21. Cai Y, Shen W, Loo SL, Krantz WB, Wang R, Fane AG, Hu X, Water Res., 47, 3773, 2013
  22. Kabiri K, Zohuriaan-Mehr MJ, Macromol. Mater. Eng., 289, 653, 2004
  23. Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H, Soft Matter, 7, 10048, 2011
  24. Sun ST, Wu PY, Macromolecules, 43(22), 9501, 2010
  25. Kousar F, Malana MA, Chughtai AH, Khan MS, Polym. Bull., 75(3), 1275, 2018
  26. Saikia AK, Aggarwal S, Mandal UK, J. Polym. Res., 20, 1, 2013
  27. Nguyen TPN, Yun ET, Kim IC, Kwon YN, J. Membr. Sci., 433, 49, 2013
  28. Li G, Li XM, He T, Jiang B, Gao CJ, Desalin. Water Treat., 51, 2656, 2013
  29. Dong S, Yun Y, Wang M, Li C, Fu H, Li X, Yang W, Liu G, J. Taiwan Inst. Chem. E., 117, 56, 2021
  30. Li B, Yun Y, Wang M, Li C, Yang W, Li J, Liu G, Desalination, 500, 114889, 2021
  31. Bao Y, Ma JZ, Li N, Carbohydr. Polym., 84, 76, 2011
  32. Zeng Y, Ling Q, Wang K, Yao JF, Li D, Simon GP, Wang R, Wang H, RSC Adv., 3, 887, 2013