Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 924-937, 2021
Flow pattern study, gas hold-up and gas liquid mass transfer correlations in a bubble column: Effect of non - coalescing water - organic mixtures
Experiments of hydrodynamic and gas liquid mass transfer were carried out in a bubble column of 19.4 cm internal diameter and of 4m height. The liquid phase can be either tap water or a coalescence inhibitor system, using aqueous solutions of three alcohols (ethanol, 2-propanol and 1-butanol) with a volumetric concentration of 0.05% v/v and sodium dodecyl sulfate: SDS (10?3mol/L) as an anionic surfactant. The hydrodynamic study involved placing wall pressure sensors in different axial positions of a bubble column to determine the gas hold-up in different regions and the influence of non-coalescing system on its evolution. The overall liquid movement induced by bubbles and the residence time distribution analysis of liquid phase was performed by using inductivity sensors. Gas hold-up results showed that the presence of the gas is more important in the zone far enough to the gas distributor (zone II). The results of the volumetric mass transfer coefficient (KLa) revealed that KLa decreased with the addition of alcohol, especially when the number of carbons in alcohol increased. KLa decreased more with the addition of anionic surfactant. It was also proven that a decrease in KLa was due to a decrease in KL, which was due to a decrease of bubble rise velocity as well as of the diffusivity when alcohol or ionic surfactant was added. Correlations were developed linking gas holdup and gas-liquid mass transfer coefficient to superficial gas velocity and surface tension gradient.
[References]
  1. Azizi F, Al Taweel AM, Chem. Eng. Sci., 62(24), 7436, 2007
  2. Magolan B, Lubchenko N, Baglietto E, Chem. Eng. Sci.: X, 2, 100009, 2019
  3. Chisti MY, Airlift bioreactors, Elsevier, New York (1989).
  4. Camarasa E, Vial C, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Process., 60, 329, 1999
  5. Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Sci., 55(15), 2957, 2000
  6. Jin HB, Yang SH, He GX, Guo ZW, Tong ZM, Chem. Eng. Sci., 60(22), 5955, 2005
  7. Erfani A, Khosharay S, Aichele CP, J. Chem. Thermodyn., 135, 241, 2019
  8. Cachaza EM, Diaz ME, Montes FJ, Galan MA, Chem. Eng. Sci., 66(18), 4047, 2011
  9. Guido G, Pellegrini LA, Chem. Eng. Res. Des., 124, 283, 2017
  10. Besagni G, Inzoli F, Chem. Eng. Sci., 170, 270, 2017
  11. Vandu CO, Krishna R, Chem. Eng. Process., 43(8), 987, 2004
  12. Miron AS, Camacho FG, Gomez AC, Grima EM, Chisti Y, AIChE J., 46(9), 1872, 2000
  13. Gourich B, Vial C, Essadki AH, Allam F, Soulami MB, Ziyad M, Chem. Eng. Process., 45(3), 214, 2006
  14. Martin M, Montes FJ, Galan MA, Chem. Eng. J., 128(1), 21, 2007
  15. Orhan R, Dursun G, Chem. Eng. Res. Des., 109, 477, 2016
  16. Kovats P, Thevenin D, Zahringer K, Int. J. Multiphase Flow, 123, 103174, 2020
  17. Shu SL, Vidal D, Bertrand F, Chaouki J, Renew. Energy, 141, 613, 2019
  18. Dolenko TA, Burikov SA, Dolenko SA, Efitorov AO, Plastinin IV, Yuzhakov VI, Patsaeva SV, J. Phys. Chem. A, 119, 10806, 2015
  19. Guo KY, Wang TF, Yang GY, Wang JF, J. Chem. Technol. Biotechnol., 92(2), 432, 2017
  20. Syeda SR, Afacan A, Chuang KT, Can. J. Chem. Eng., 80(1), 44, 2002
  21. Rosso D, Huo DL, Stenstrom MK, Chem. Eng. Sci., 61(16), 5500, 2006
  22. Alves SS, Orvalho SP, Vasconcelos JMT, Chem. Eng. Sci., 60(1), 1, 2005
  23. Solsvik J, Jakobsen HA, J. Dispersion Sci. Technol., 35, 1626, 2014
  24. Oolman TO, Blanch HW, Chem. Eng. Commun., 43, 237, 1986
  25. Zahradnik J, Fialova M, Linek V, Chem. Eng. Sci., 54(21), 4757, 1999
  26. Fujimoto T, Sanyo Chemical Industries Ltd., Kyoto (Japan) (1985).
  27. Vasconcelos JMT, Orvalho SP, Alves SS, Am. Inst. Chem. Engineers J., 48, 1145, 2002
  28. Boussinesq J, Annales de Chimie et de Physique, 29, 364, 1913
  29. Garner FH, Hammerton D, Chem. Eng. Sci., 3, 1, 1954
  30. Dukhin SS, Kovalchuk VI, Gochev GG, Lotfi M, Krzan M, Malysa K, Miller R, Adv. Colloid Interface Sci., 222, 260, 2015
  31. Syeda SR, Reza MJ, Chem. Eng. Res. Des., 89(12A), 2552, 2011
  32. Khoshray S, Talebi M, Akbari TS, Salehi ST, J. Mol. Liq., 249, 245, 2018
  33. Torn RD, Nathanson GM, J. Phys. Chem. B, 106(33), 8064, 2002
  34. Biscay F, Ghoufi A, Malfreyt P, J. Chem. Phys., 134, 044709, 2011
  35. Albijanic B, Chatterjee S, Subasinghe N, Asad MWA, Chem. Eng. Res. Des., 113, 241, 2016
  36. Zahradnik J, Fialova M, Chem. Eng. Sci., 51(10), 2491, 1996
  37. Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH, Chem. Eng. Sci., 52(21-22), 3811, 1997
  38. Levenspiel O, Chemical reaction engineering, Third Ed. John Wiley & Sons, New York (1999).
  39. Essadki AH, Gourich B, Vial C, Delmas H, Chem. Eng. Sci., 66(14), 3125, 2011
  40. Stenstrom MK, Gilbert RG, Wat. Res., 15(6), 643, 1981
  41. Jamnongwong M, Loubiere K, Dietrich N, Hebrard G, Chem. Eng. J., 165(3), 758, 2010
  42. Frossling N, Gerlands Beitage zur Geophysik, 52, 170, 1938
  43. Maceiras R, Santana R, Alves SS, Chem. Eng. Sci., 62(23), 6747, 2007
  44. Griffith RM, Chem. Eng. Sci., 17, 1057, 1962
  45. Gourich B, Vial C, El Azher N, Soulami MB, Ziyad M, Biochem. Eng. J., 39, 1, 2008
  46. Han L, Al-Dahhan MH, Chem. Eng. Sci., 62(1-2), 131, 2007
  47. Zednikova M, Orvalho S, Fialova M, Ruzicka M, Chem. Eng., 2, 19, 2018
  48. Asgharpour M, Mehrnia MR, Mostoufi N, Biochem. Eng. J., 49, 351, 2010