Issue
Korean Journal of Chemical Engineering,
Vol.38, No.5, 885-898, 2021
Recent applications of the liquid phase plasma process
In this paper, the principle and application of plasma are briefly described, and in particular, the principle and practical application for plasma generated in liquid are introduced. Also, the research results of water treatment, synthesis of metal nanoparticle, synthesis of visible light-responsive photocatalyst, synthesis of energy material, and hydrogen gas production, which were tested using liquid phase plasma, are introduced. Various water pollutants were treated and hydrogen gas was produced using the strong chemical oxidizing species and ultraviolet rays in the plasma field generated in the reactant aqueous solution during the liquid phase plasma (LPP) process. The effects of plasma discharge conditions, dissolved oxygen concentration, pH value, photocatalytic behavior, as well as the properties of organic solutions on the LPP reaction were investigated experimentally and reported. Based on these previous studies, metal nanoparticles were synthesized using hydrogen atom radicals as well as the numerous electrons in the plasma field generated during the LPP process. Additionally, these studies indicate that visible light-responsive photocatalysts can be obtained when metal nanoparticles are precipitated in TiO2. They also provide evidence that metal nanoparticles can be precipitated in various carbon materials for application as electrodes in secondary batteries and supercapacitors. Therefore, the LPP process has been successfully applied in various fields given that it can be easily and conveniently used, and presently it is being applied in several new fields and many possibilities for its future application are expected.
[References]
  1. Baroch P, Anita V, Saito N, Takai O, J. Electrostat., 66, 294, 2008
  2. Hieda J, Saito N, Takai O, Surf. Coat. Tech., 202, 5343, 2008
  3. Saito N, Hieda J, Takai O, Thin Solid Films, 518(3), 912, 2009
  4. Pootawang P, Saito N, Takai O, Thin Solid Films, 519(20), 7030, 2011
  5. Vijay M, Ananthapadmanabhan PV, Sreekumar KP, Appl. Surf. Sci., 255(23), 9316, 2009
  6. Clements JS, Sato M, Davis RH, IEEE Trans. Ind. Appl., IA-23, 224, 1987
  7. Yasukoka K, Haehara T, Katsuki J, Katsuki S, Namihira T, Kaneko T, Hatakeyama R, J. Plasma Fusion Res., 84, 666, 2008
  8. Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R, Plasma Sources Sci. Technol., 17, 024010, 2008
  9. Namihira T, Sakai S, Yamaguchi T, Yamamoto K, Yamada C, Kiyan T, Sakugawa T, Katsuki S, IEEE Trans. Plasma Sci., 35, 614, 2007
  10. Tsuji T, Mizuki T, Ozono S, Tsuji M, J. Photochem. Photobiol. A-Chem., 206, 134, 2009
  11. Itatani R, Appl. Phys. Express, 69, 971, 2000
  12. Laroussi M, IEEE Trans. Plasma Sci., 24, 1188, 1996
  13. Clements JS, Sato M, Davis RH, IEEE Trans. Ind. Appl., IA-23, 224, 1987
  14. Devins JC, Rzad SJ, Schwabe RJ, J. Appl. Phys., 52, 4531, 1981
  15. Yasukoka K, Haehara T, Katsuki J, Katsuki S, Namihira T, Kaneko T, Hatakeyama R, J. Plasma Fusion Res., 84, 666, 2008
  16. Hickling A, Ingram MD, Trans. Faraday Soc., 60, 783, 1964
  17. Horikoshi S, Serpone N, RSC Adv., 7, 47196, 2017
  18. Tsuji T, Mizuki T, Ozono S, Tsuji M, J. Photochem. Photobiol. A-Chem., 206, 134, 2009
  19. Gornushkin IB, Panne U, Spectroc. Acta Pt. B-Atom. Spectr., 65, 345, 2000
  20. Saito G, Akiyama T, J. Nanomater., 2015, 1, 2015
  21. Sathyanarayanan G, Haapala M, Dixon C, Wheeler AR, Sikanen TM, Adv. Mater. Technol., 5: 2000451 (2020).
  22. Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F, Barolo C, Green Chem., 22, 7168, 2020
  23. Dokouzis A, Bella F, Theodosiou K, Gerbaldi C, Leftheriotis G, Mater. Today Energy, 15, 100365, 2020
  24. Yang Z, Luo Y, Gao X, Wang R, Chem. Electro. Chem., 7, 2599, 2020
  25. Galliano S, Bella F, Bonomo M, Viscardi G, Gerbaldi C, Boschloo G, Barolo C, Nanomaterials, 10, 1585, 2020
  26. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C, Langmuir, 35(25), 8210, 2019
  27. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS, Ind. Eng. Chem. Res., 45(3), 882, 2006
  28. Noack J, Vogel A, IEEE J. Quantum Electron., 35, 1156, 1999
  29. Mukasa S, Nomura S, Toyota H, Jpn. J. Appl. Phys., 46, 6015, 2007
  30. Maehara T, Toyota H, Kuramoto M, Iwamae A, Tadokoro A, Mukasa S, Yamashita H, Kawashima A, Nomura S, Jpn. J. Appl. Phys., 45, 8864, 2006
  31. Sun SH, Jung SC, Korean J. Chem. Eng., 33(3), 1075, 2016
  32. Kim SC, Park YK, Kim BH, An KH, Lee H, Lee SJ, Jung SC, J. Nanosci. Nanotechnol., 17, 2578, 2017
  33. Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC, Int. J. Hydrog. Energy, 40(1), 754, 2015
  34. Ki SJ, Park YK, Kim JS, Lee WJ, Lee H, Jung SC, Chem. Eng. J., 377, 120087, 2019
  35. Kim SC, Park YK, Kim BH, Kim HG, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35(3), 750, 2018
  36. Ki SJ, Jeon KJ, Park YK, Park H, Jeong S, Lee H, Jung SC, J. Environ. Manage., 203, 880, 2017
  37. Lee H, Park IS, Bang HJ, Park YK, Cho EB, Kim BJ, Jung SC, Appl. Surf. Sci., 481, 625, 2019
  38. Chung KH, Park H, Jeon KJ, Park YK, Jung SC, Catal. Today, 307, 131, 2018
  39. Chung KH, Jeong S, Lee H, Kim SJ, Jeon KJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 42(38), 24099, 2017
  40. Lee H, Park YK, Kim JS, Park YH, Jung SC, Environ. Res., 169, 256, 2019
  41. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, Surf. Coat. Technol., 307, 1018, 2016
  42. Lee H, Park SH, Cheong CJ, Kim SJ, Seo SG, Park YK, Jung SC, Ozone-Sci. Eng., 36, 244, 2014
  43. Potocky S, Saito N, Takai O, Thin Solid Films, 518(3), 918, 2009
  44. Lung K, Huang JC, Tien DC, Liao CY, Tseng KH, et al., J. Alloy. Compd., 434, 655, 2007
  45. Kim SC, Park YK, Kim BH, An KH, Lee H, Lee SJ, Jung SC, J. Nanosci. Nanotechnol., 17, 2578, 2017
  46. Lee SJ, Lee H, Jeon KJ, Park H, Park YK, Jung SC, Nanoscale Res. Lett., 11, 344, 2016
  47. Xu Z, Shen C, Tian Y, Shi X, Gao HJ, Nanoscale, 2, 1027, 2010
  48. Bharath G, madhu R, Chen SM, Veeramani V, Mangalaraja D, Ponpandian N, J. Mater. Chem. A, 3, 15529, 2015
  49. Nensebaa F, Patrito N, Page YL, L’Ecuyer P, Wang D, J. Mater. Chem., 14, 3378, 2014
  50. Ma L, Liu C, Liao J, Lua T, Xing W, Zhang J, Electrochim. Acta, 54, 57274, 2009
  51. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, Surf. Coat. Technol., 307, 1018, 2016
  52. Ki SJ, Jeon KJ, Park YK, Park H, Jeong S, Lee H, Jung SC, J. Environ. Manage., 203, 880, 2017
  53. Kim BH, Park YK, An KH, Lee H, Jung SC, Sci. Adv. Mater., 8, 1769, 2016
  54. Chung KH, Park IS, Bang HJ, Park YK, Kim SJ, Kim BJ, Jung SC, Sci. Total Environ., 676, 190, 2019
  55. Chung KH, Jeong S, Kim BJ, Kim JS, Park YK, Jung SC, Int. J. Hydrog. Energy, 43(11), 5873, 2018
  56. Jeong S, Chung KH, Lee H, Park H, Jeon KJ, Park YK, Jung SC, ACS Sustainable Chem. Eng., 5, 3659, 2017
  57. Chung KH, Kim BJ, Kim SJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 45, 8595, 2018
  58. Rahim I, Nomura S, Mukasa S, Toyota H, Appl. Therm. Eng., 90, 120, 2015
  59. Sakugawa T, Aoki N, Akiyama H, Ishibashi K, Watanabe M, Kouda A, Suematsu K, IEEE Trans. Plasma Sci., 42, 792, 2014