Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 797-806, 2021
Hydrothermal carbonization of oil palm trunk via taguchi method
Hydrothermal carbonization (HTC) and its parameters show a significant role in the quality of HTC products and the distribution of yield. The present study investigates the optimal conditions that are suitable to produce maximum yield products of solid, liquid, and gas, from HTC of oil palm trunk (OPT), by following the Taguchi method. Moreover, all the three products of HTC were analyzed using various characterizations. The optimum runs for hydrochar yield, liquid yield, and gaseous yield were run 1 (R1), run 4 (R4), and run 9 (R9), respectively. The reaction temperature was found to be the most influential parameter that affected the yield distribution during HTC, where low temperature supported solid production, intermediate temperatures favored liquid yield, and high temperature produced higher gaseous yield. Elemental analysis, H/C and O/C atomic ratios, higher heating value (HHV), and energy density values of hydrochar recommended that the HTC process has significantly converted OPT into better energy fuel. The energy densification value of hydrochar ranged between 1.28 and 1.40, which confirmed the significance of the HTC process. Two characteristic peaks from FTIR were observed at 3,430 cm?1 and 2,923 cm?1 hydrochar. SEM analysis confirmed that the porosity of hydrochar was higher than OPT after HTC. However, the major organic matter in the bio-oil traced by GC-MS analysis was acetic acid, accounting for about 59.9-71.7%, and the outlet gaseous product consisted of 0.87-9.17% CH4, 3.88-29.02% CO2, 1.07-7.89% CO, and 0.31-1.97% H2, respectively, as shown by GC-TCD.
[References]
  1. Nizamuddin S, Jayakumar NS, Sahu J, Ganesan P, Bhutto AW, Mubarak NM, Korean J. Chem. Eng., 32(9), 1789, 2015
  2. Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37(1), 166, 2020
  3. Kim SS, Tsang YF, Kwon EE, Lin KYA, Lee JC, Korean J. Chem. Eng., 36(1), 1, 2019
  4. Tran HN, You SJ, Chao HP, Korean J. Chem. Eng., 34(6), 1708, 2017
  5. Li Y, Song N, Wang K, Korean J. Chem. Eng., 36(5), 678, 2019
  6. Brown A, McKeogh B, Tompsett G, Lewis R, Deskins N, Timko M, Carbon, 125, 614, 2017
  7. Sun K, Tang J, Gong Y, Zhang H, Environ. Sci. Pol. Res., 22, 16640, 2015
  8. Xiao LP, Shi ZJ, Xu F, Sun RC, Bioresour. Technol., 118, 619, 2012
  9. Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS, Renew. Sust. Energ. Rev., 73, 1289, 2017
  10. Kong SH, Loh SK, Bachmann RT, Rahim SA, Salimon J, Renew. Sust. Energ. Rev., 39, 729, 2014
  11. Ismail W, Thaim TM, Rasid RA, Biomass. Bioenergy, 124, 83, 2019
  12. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073, 2013
  13. Loow YL, Wu TY, J. Environ. Manage., 216, 192, 2018
  14. Tang KHD, Al Qahtani HM, Environ. Develop. Sustain., 22, 4999, 2020
  15. Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, et al., Materials, 12, 403, 2019
  16. Fang J, Zhan L, Ok YS, Gao B, J. Ind. Eng. Chem., 57, 15, 2018
  17. Kumar S, Loganathan VA, Gupta RB, Barnett MO, J. Environ. Manage., 92, 2504, 2011
  18. Xue YW, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS, Chem. Eng. J., 200, 673, 2012
  19. Dai LC, Wu B, Tan FR, He MX, Wang WG, Qin H, Tang XY, Zhu QL, Pan K, Hu QC, Bioresour. Technol., 161, 327, 2014
  20. Hammud HH, Shmait A, Hourani N, RSC Adv., 5, 7909, 2015
  21. Baloch HA, Siddiqui M, Nizamuddin S, Mubarak N, Khalid M, Srinivasan M, Griffin G, Proc. Safety Environ. Prot., 137, 300, 2020
  22. Yuliansyah AT, Hirajima T, Kumagai S, Sasaki K, Waste. Biomass. Valor., 1, 395, 2010
  23. Uzun BB, Apaydin-Varol E, Ates F, Ozbay N, Putun AE, Fuel, 89(1), 176, 2010
  24. Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN, BioResources, 7, 0246, 2012
  25. Huang HJ, Yuan XZ, Zeng GM, Wang JY, Li H, Zhou CF, Pei XK, You QA, Chen LA, Fuel Process. Technol., 92(1), 147, 2011
  26. Zhu Z, Rosendahl L, Toor SS, Yu DH, Chen GY, Appl. Energy, 137, 183, 2015
  27. Baloch HA, Nizamuddin S, Siddiqui M, Riaz S, Jatoi AS, Dumbre DK, Mubarak N, Srinivasan M, Griffin G, J. Environ. Chem. Eng., 6, 5101, 2018
  28. Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876, 2011
  29. Yan YJ, Xu J, Li TC, Ren ZW, Fuel Process. Technol., 60(2), 135, 1999
  30. Boocock D, Sherman K, Can. J. Chem. Eng., 63, 627, 1985
  31. Intani K, Latif S, Kabir AKMR, Muller J, Bioresour. Technol., 218, 541, 2016
  32. Siddiqui M, Nizamuddin S, Mubarak N, Shirin K, Aijaz M, Hussain M, Baloch HA, Waste. Biomass. Valor., 10, 521, 2019
  33. Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, Tanksale A, Environ. Sci. Pol. Res., 25, 17529, 2018
  34. Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87, 2007
  35. Gomez N, Banks SW, Nowakowski DJ, Rosas JG, Cara J, Sanchez ME, Bridgwater AV, Fuel Process. Technol., 172, 97, 2018
  36. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD, Bioresour. Technol., 101(21), 8389, 2010
  37. Liu ZG, Quek A, Hoekman SK, Balasubramanian R, Fuel, 103, 943, 2013
  38. Parshetti GK, Chowdhury S, Balasubramanian R, Biresour. Technol., 161, 310, 2014
  39. Lin HZ, Wang SR, Zhang L, Ru B, Zhou JS, Luo ZY, Chin. J. Chem. Eng., 25(2), 232, 2017
  40. Elaigwu SE, Greenway GM, J. Anal. Appl. Pyrol., 118, 1, 2016
  41. Guiotoku M, Rambo C, Hansel F, Magalhaes W, Hotza D, Mater. Lett., 63, 2707, 2009
  42. Zhao PT, Shen YF, Ge SF, Yoshikawa K, Energy Conv. Manag., 78, 815, 2014
  43. Chadwick DT, McDonnell KP, Brennan LP, Fagan CC, Everard CD, Renew. Sust. Energ. Rev., 30, 672, 2014
  44. Park J, Won SW, Mao J, Kwak IS, Yun YS, J. Hazard. Mater., 181(1-3), 794, 2010
  45. Afolabi OO, Sohail M, Thomas C, Waste. Biomass. Valor., 6, 147, 2015
  46. Gao Y, Wang XH, Wang J, Li XP, Cheng JJ, Yang HP, Chen HP, Energy, 58, 376, 2013
  47. Marx S, Chiyanzu I, Piyo N, Bioresour. Technol., 164, 177, 2014
  48. Kannan S, Gariepy Y, Raghavan GSV, Energy Fuels, 31(4), 4068, 2017
  49. Tumuluru JS, Sokhansanj S, Wright CT, Kremer T, Adv. Gas Chromatogr. Agric. Biomed. Indistrial Appl., 211 (2012).
  50. Uemura Y, Sellappah V, Trinh TH, Hassan S, Tanoue KI, Bioresour. Technol., 243, 107, 2017
  51. Prins MJ, Ptasinski KJ, Janssen FJ, J. Anal. Appl. Pyrol., 77, 35, 2006
  52. Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB, Biomass. Bioenergy, 34, 67, 2010
  53. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044, 2006
  54. Jindal MK, Jha MK, RSC Adv., 6, 41772, 2016
  55. Chen DY, Gao AJ, Cen KH, Zhang J, Cao XB, Ma ZQ, Energy Conv. Manag., 169, 228, 2018
  56. Bridgeman TG, Jones JM, Shield I, Williams PT, Fuel, 87(6), 844, 2008