Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 747-755, 2021
Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol
CO2 hydrogenation to methanol is attracting specific interest because of its potential economic and environmental benefits in transforming waste CO2 to value-added hydrocarbons. Copper-based catalysts are documented as efficient and widely applied, whereas insufficient catalytic properties of conventional catalysts hinder their application. Herein, catalysts using Mg-Al hydrotalcite (HT) as the carrier of Cu/ZnO/ZrO2 (CZZ) nanoparticles were prepared to exploit special advantages of hydrotalcite on copper dispersion and catalytic performance. The results show that CZZ nanoparticles can be uniformly dispersed on external surfaces of HT, elevating BET surface areas of CZZ-HT samples by at least 2.5 times compared to pure CZZ. The HT carrier also enriches strong basic sites and hence elevates CO2 adsorption capabilities in the range of reaction temperature. Both copper surface area and copper dispersion of CZZ-HT samples are improved dramatically. A catalyst containing 45.1 wt% of CZZ shows 1.1 times higher copper surface area per gram CZZ and 1.6 times higher copper dispersion than the reference CZZ. Subsequent reactions demonstrate the CZZ-HT samples show remarkably promoted turnover frequency (TOF) for methanol synthesis and retain considerable catalyst stability. The typical catalyst prepared in this research, at the reaction temperature of 523 K and pressure of 3.0MPa, presents a 68.2% higher methanol STYCu per gram copper and an 117.0% higher SMeOH/SCO ratio than the commercial catalyst. The support HT plays a crucial role for the enhanced catalytic performance physically and chemically. Thus, the as-prepared CZZ-HT catalyst provides a significant improvement for CO2 utilization.1
[References]
  1. Olah GA, Goeppert A, Prakash GKS, J. Org. Chem., 74, 487, 2009
  2. Goeppert A, Czaun M, Jones JP, Prakash GKS, Olah GA, Chem. Soc. Rev., 43, 7995, 2014
  3. Kar S, Kothandaraman J, Goeppert A, Prakash GKS, J. CO2 Util., 23, 212, 2018
  4. Frusteri F, Migliori M, Cannilla C, Frusteri L, Catizzone E, Aloise A, Giordano G, Bonura G, J. CO2 Util., 18, 353, 2017
  5. Jiao F, Li JJ, Pan XL, Xiao JP, Li HB, Ma H, Wei MM, Pan Y, Zhou ZY, Li MR, Miao S, Li J, Zhu YF, Xiao D, He T, Yang JH, Qi F, Fu Q, Bao XH, Science, 351(6277), 1065, 2016
  6. Wan ZJ, Wu W, Li G, Wang CF, Yang H, Zhang DK, Appl. Catal. A: Gen., 523, 312, 2016
  7. Thomas JM, Harris KDM, Energy Environ. Sci., 9, 687, 2016
  8. Kong M, Liu Z, Vogt T, Lee Y, Microporous Mesoporous Mater., 221, 253, 2016
  9. Men Y, Fang X, Gu Q, Singh R, Wu F, Danaci D, Zhao Q, Xiao P, Webley PA, Appl. Catal. B: Environ., 275, 119067, 2020
  10. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK, Nat. Chem., 6, 320, 2014
  11. Rui N, Wang ZY, Sun KH, Ye JY, Ge QF, Liu CJ, Appl. Catal. B: Environ., 218, 488, 2017
  12. Yang XF, Kattel S, Senanayake SD, Boscoboinik JA, Nie XW, Graciani J, Rodriguez JA, Liu P, Stacchiola DJ, Chen JGG, J. Am. Chem. Soc., 137(32), 10104, 2015
  13. Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P, Science, 355(6331), 1296, 2017
  14. Schumann J, Lunkenbein T, Tarasov A, Thomas N, Schlogl R, Behrens M, ChemCatChem, 6, 2889, 2014
  15. Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F, Appl. Catal. B: Environ., 152, 152, 2014
  16. Koh MK, Wong YJ, Chai SP, Mohamed AR, J. Ind. Eng. Chem., 62, 156, 2018
  17. Hu B, Yin YZ, Liu GL, Chen SL, Hong XL, Tsang SCE, J. Catal., 359, 17, 2018
  18. Xiao J, Mao DS, Guo XM, Yu J, Appl. Surf. Sci., 338, 146, 2015
  19. Tamura M, Kitanaka T, Nakagawa Y, Tomishige K, ACS Catal., 6, 376, 2016
  20. An X, Li JL, Zuo YZ, Zhang Q, Wang DZ, Wang JF, Catal. Lett., 118(3-4), 264, 2007
  21. Liu LC, Corma A, Chem. Rev., 118(10), 4981, 2018
  22. Boucher MB, Zugic B, Cladaras G, Kammert J, Marcinkowski KD, Lawton TJ, Sykes ECH, Flytzani-Stephanopoulos M, Phys. Chem. Chem. Phys., 15, 12187, 2013
  23. Guo XG, Fang GZ, Li G, Ma H, Fan HJ, Yu L, Ma C, Wu X, Deng DH, Wei MM, Tan DL, Si R, Zhang S, Li JQ, Sun LT, Tang ZC, Pan XL, Bao XH, Science, 344(6184), 616, 2014
  24. Li MMJ, Chen C, Ayvali T, Suo H, Zheng J, Teixeira I, Ye L, Zou H, O'Hare D, Tsang SCE, ACS Catal., 8, 4390, 2018
  25. Jeong C, Suh YW, Catal. Today, 265, 254, 2016
  26. Ma ZY, Yang C, Wei W, Li WH, Sun YH, J. Mol. Catal. A-Chem., 231(1-2), 75, 2005
  27. Venkatesha NJ, Ramesh S, Ind. Eng. Chem. Res., 57, 15, 2018
  28. Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen JC, Sueiras JE, Salagre P, Cesteros Y, Chem. - A Eur. J., 11, 728, 2005
  29. Aschenbrenner O, McGuire P, Alsamaq S, Wang JW, Supasitmongkol S, Al-Duri B, Styring P, Wood J, Chem. Eng. Res. Des., 89(9A), 1711, 2011
  30. Hutson ND, Speakman SA, Payzant EA, Chem. Mater., 16, 4135, 2004
  31. Fang X, Men Y, Wu F, Zhao Q, Singh R, Xiao P, Du T, Webley PA, J. CO2 Util., 29, 57, 2019
  32. Saha S, Abd Hamid SB, RSC Adv., 7, 9914, 2017
  33. Zhang YJ, Chen CQ, Lin XY, Li DL, Chen XH, Zhan YY, Zheng Q, Int. J. Hydrog. Energy, 39(8), 3746, 2014
  34. Guo X, Mao D, Lu G, Wang S, Wu G, Catal. Commun., 12, 1095, 2011
  35. Dandekar A, Vannice MA, J. Catal., 178, 62, 1998
  36. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F, Appl. Catal. A: Gen., 350(1), 16, 2008
  37. Hua YX, Guo XM, Mao DS, Lu GZ, Rempel GL, Ng FTT, Appl. Catal. A: Gen., 540, 68, 2017
  38. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J, Chem. Eng. J., 316, 692, 2017
  39. Dong XS, Li F, Zhao N, Xiao FK, Wang JW, Tan YS, Appl. Catal. B: Environ., 191, 8, 2016
  40. Hutson ND, Speakman SA, Payzant EA, Chem. Mater., 16, 4135, 2004
  41. Asthana S, Samanta C, Bhaumik A, Banerjee B, Voolapalli RK, Saha B, J. Catal., 334, 89, 2016
  42. Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL, J. Am. Chem. Soc., 125(35), 10684, 2003
  43. Witoon T, Chalorngtham J, Dumrongbunditkul P, Chareonpanich M, Limtrakul J, Chem. Eng. J., 293, 327, 2016
  44. Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J, Energy Conv. Manag., 118, 21, 2016
  45. Gao P, Li F, Zhan HJ, Zhao N, Xiao FK, Wei W, Zhong LS, Wang H, Sun YH, J. Catal., 298, 51, 2013
  46. Hutson ND, Attwood BC, Adsorption, 14, 781, 2008
  47. Yong Z, Rodrigues AE, Energy Conv. Manag., 43(14), 1865, 2002
  48. Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E, Bueno JMC, J. Catal., 307, 1, 2013
  49. Frusteri F, Cordaro M, Cannilla C, Bonura G, Appl. Catal. B: Environ., 162, 57, 2015
  50. Patel S, Pant KK, Chem. Eng. Sci., 62(18-20), 5436, 2007
  51. Grabow LC, Mavrikakis M, ACS Catal., 1, 365, 2011
  52. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS, J. Mol. Catal. A-Chem., 345(1-2), 60, 2011
  53. Liu XM, Lu GQ, Yan ZF, Beltramini J, Ind. Eng. Chem. Res., 42(25), 6518, 2003
  54. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J, Chem. Eng. J., 334, 1781, 2018
  55. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48, 2008