Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 716-735, 2021
Bubble dynamics and deformation of free liquid surface in aerated liquid storage tanks
OpenFOAM was utilized for analyzing bubble behavior and deformation of free liquid surface due to bubble formation and bursting in a rectangular container. Influence of three system parameters, orifice diameter, number of orifices and spacing between orifices, on various bubble dynamics and deformation of gas-liquid interface is presented. The study also incorporates information on bubble formation, bubbling frequency, and orientation of bubbles. Considering different orifice spacing, bubbling synchronicity is also reported. Details regarding interaction of wakes during bubble coalescence for single, double and triple inlet orifices are presented. The deformation of free liquid surface due to bubble formation and bursting is quantified using a new parameter called deformation index (DL *). The analyses indicate that the frequency of bubble detachment is augmented with increase in orifice diameter and number of orifices. However, bubble detachment frequency is reduced when orifice spacing increased. Orientation of detached bubbles keeps on changing for larger orifice spacing. Results show that variations of these geometric parameters have substantial influence on free liquid surface deformation due to bubble bursting and other bubble behavior. Using results of these studies, one can develop a bubble-generating device for optimal performance.
[References]
  1. Deen NG, Solberg T, Hjertager BH, CHISA, Int. Con. Chem. Pro. Eng., Praha, Czech Republic, August 27-31, 1-18 (2000).
  2. Ma D, Liu MY, Zu YG, Tang C, Chem. Eng. Sci., 72, 61, 2012
  3. Bin L, Jun C, Fengchao L, Xiulan H, J. Ther. Sci., 22, 352, 2013
  4. Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K, Korean J. Chem. Eng., 31(8), 1349, 2014
  5. Hirt CW, Nichols BD, J. Comput. Phys., 39, 201, 1981
  6. Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3623, 1997
  7. Delaure YMC, Chan VSS, Murray DB, Exp. Therm. Fluid Sci., 27, 911, 2003
  8. Boyce CM, Penn A, Lehnert M, Pruessmann KP, Muller CR, Chem. Eng. Sci., 208, 1, 2019
  9. Wang H, Verdugo AS, Sun J, Wang J, Yang Y, Jimenez FH, Chem. Eng. Sci., 211, 1, 2020
  10. Wahhab HAA, Aziz ARA, Kayiem HHA, Nasif MS, J. Appl. Fluid Mech., 10, 1649, 2017
  11. Behkish A, Men ZW, Inga JR, Morsi BI, Chem. Eng. Sci., 57(16), 3307, 2002
  12. Andrzej KB, Machniewski PM, Rudniak L, Poli. Sci. Commi., 8, 17, 2004
  13. Alkhalidi AAT, Amano RS, Water Environ. J., 29, 105, 2014
  14. Han YY, Koshizuka S, Oka Y, Nucl. Sci. Eng., 133, 192, 1999
  15. Mehta B, Khandekar S, 11th Int. Con. Quan. Infr. Ther., QIRT, 11-14 June, Naples Italy (2012).
  16. Islam MT, Ganesan P, Sahu JN, Hamad F, Ther. Sci., 19, 2127, 2015
  17. Wang Z, Chen R, Zhu X, Liao Q, Ye D, Zhang B, He X, Jiao L, Appl. Therm. Eng., 131, 132, 2018
  18. King L, Sadhal SS, Heat Mass Transfer., 50, 373, 2014
  19. Verma A, Babu R, Das MK, Lect. Notes. Mech. Eng., 1059 (2017).
  20. Guan H, Wang JC, Wei ZJ, Wu CJ, Appl. Math. Mech., 40, 1181, 2019
  21. Prasad VK, Chatterjee D, Singh SP, SADHANA-ACAD P ENGS, 43, 1 (2018).
  22. Raj S, Jayakumar JS, Ind. Soc. Heat Mass Tra., 2089 (2017).
  23. Shiyi C, Doolen GD, Ann. Rev. Flu. Mech., 30, 329, 1998
  24. Gupta A, Kumar R, Int. J. Heat Mass Transfer., 51, 5192, 2008
  25. Rana BK, Paikara LS, Das AK, Das PK, Lect. Notes. Mech. Eng., 957 (2017).
  26. Raj S, Jayakumar JS, Int. Con. Comp. Meth. Therm. Prob., 612 (2018).
  27. Raj S, Jayakumar JS, Lec. Notes. Mech. Eng., 769 (2019).
  28. Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335, 1992
  29. van Leer B, J. Comput. Phys., 32, 101, 1979
  30. Ashgriz N, Poo JY, J. Comput. Phys., 93, 449, 1991
  31. Youngs DL, Numer. Methods Fluid Dyn., 273, 1982
  32. Li XN, Liu MY, Dong TT, Yao D, Ma YL, Chem. Eng. Res. Des., 155, 108, 2020
  33. Greenshields CJ, OpenFOAM User Guide, Version 6., (2018) (a).https://cfd.direct/openfoam/user-guide/.
  34. Greenshields CJ, OpenFOAM Programmer’s Guide, Version 6., (2018) (b). https://pingpong.chalmers.se/public/pp/public_courses/course09769/published/1558505655816/resourceId/5227641/content/UploadedResources/ProgrammersGuide.pdf.
  35. Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics, the finite volume method, Second Ed., Pearson Education Limited, England (2007).
  36. Klostermann J, Schaake K, Schwarze R, Int. J. Num. Meth., 71, 1, 2012
  37. Courant R, Friedrichs K, Lewy H, Mathe. Anna., 100, 32, 1928
  38. Krishna R, Van Baten JM, Chem. Eng. Res. Des., 79(3), 283, 2001
  39. Lin JN, Banerji SK, Yasuda H, Am. Chem. Soc, 10, 936, 1994
  40. Xie SY, Tan RBH, Chem. Eng. Sci., 58(20), 4639, 2003
  41. Jia F, Li ZYK, Pui DYH, Tasi CJ, Korean J. Chem. Eng., 37(3), 423, 2020