Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 400-405, 2021
Theoretical investigation on the throttle pressure reducing valve through CFD simulation and validating experiments
The throttle pressure reducing valve has potential for the high pressure heat exchanger with the advantage of simple structure, easy operation and maintenance. We investigated the discharge capacity under different pressure difference between inlet and outlet, the area of inlet and throttle though CFD simulation and validating experiments. A theoretical formula of the discharge capacity was developed through the theoretical analysis and simulated results and was well proved by the experiments. The results revealed that the square of discharge capacity is positively proportional to the pressure difference, and the drag coefficient has a linear relationship with the throttle area and the reciprocal of flange area. This research establishes the theoretical basis for the designing and engineering application of throttle pressure reducing valve.
[References]
  1. Alvarez-Fernandez M, Portillo-Valdes LD, Alonso-Tristan C, Appl. Therm. Eng., 68, 45, 2014
  2. Heo G, Lee SK, Expert Syst. Appl., 39, 5078, 2012
  3. Xu J, Yang T, Sun Y, Zhou K, Shi Y, Appl. Therm. Eng., 67, 179, 2014
  4. Godino DM, Corzo SF, Nigro NM, Ramajo DE, Nucl. Eng. Des., 335, 265, 2018
  5. Kim S, Bae BU, Cho YJ, Park YS, Kang KH, Yun BJ, Nucl. Eng. Des., 260, 54, 2013
  6. Gong M, Peng M, Zhu H, Appl. Therm. Eng., 140, 190, 2018
  7. Hossienalipour SM, Karbalaee SM, Fathiannasab H, Appl. Therm. Eng., 110, 590, 2017
  8. Jin Z, Wei L, Chen L, Qian J, Zhang M, J. Zhejiang Univ-SCI A, 14, 137, 2013
  9. Luo L, He X, Den B, Huang X, J. Press. Vessel Technol., 136, 021601, 2014
  10. He X, Deng B, Huang X, Yan X, Adv. Mater. Res., 842, 569, 2014
  11. Jin ZJ, Chen FQ, Qian JY, Zhang M, Chen LL, Wang F, Fei Y, Int. J. Hydrog. Energy, 41(12), 5559, 2016
  12. Qian JY, Zhang M, Lei LN, Chen FQ, Chen LL, Wei L, Jin ZJ, Energy Conv. Manag., 119, 81, 2016
  13. Wei L, Jin Z, J. Acoust. Soc. Am., 134, 4191, 2013
  14. Jin Z, Wei L, Zhu G, Qian J, Fei Y, Jin Z, PLos One, 10, 01, 2015
  15. Hou C, Qian J, Chen F, Jiang W, Jin Z, Appl. Therm. Eng., 128, 1238, 2018
  16. Saha B, Chattopadhyay H, Mandal P, Gangopadhyay T, Comput. Fluids, 101, 233, 2014
  17. Beune A, Kuerten JGM, Schmidt J, AIChE J., 57(12), 3285, 2011
  18. Beune A, Kuerten JGM, van Heumen MPC, Comput. Fluids, 64, 108, 2012
  19. Qian JY, Wei L, Jin ZJ, Wang JK, Zhang H, Lu AL, Energy Conv. Manag., 87, 220, 2014
  20. Zhang P, Zhou D, Shi W, Li X, Wang B, Appl. Therm. Eng., 65, 384, 2014
  21. Chalet D, Chesse P, Eng. Appl. Comp. Fluid Mech., 4, 387, 2010
  22. Feng P, Chen D, Cao Y, Chen Y, Korean J. Chem. Eng., 37(4), 604, 2020
  23. Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K, Korean J. Chem. Eng., 31(8), 1349, 2014
  24. Li L, Xu B, Korean J. Chem. Eng., 33(7), 2007, 2016
  25. Rafiee SE, Sadeghiazad MM, Aerosp. Sci. Technol., 63, 110, 2017
  26. Wackers J, Deng G, Guilmineau E, Leroyer A, Queutey P, Visonneau M, Palmieri A, Liverani A, J. Comput. Phys., 344, 364, 2017
  27. Sun Y, Yu J, Wang W, Yang S, Hu X, Feng J, Korean J. Chem. Eng., 37(5), 743, 2020
  28. Rafiee SE, Sadeghiazad MM, J. Marine Sci. Appl., 15, 388, 2016