Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 354-365, 2021
Novel curcumin-loaded chitosan-polyelectrolyte complexed nanoparticles and their characteristics
Curcumin was incorporated into oil/water (o/w) emulsion by dissolving it in soybean oil to cover the surface of the oil droplets with a pH-sensitive polyelectrolyte complex (PEC) composed of chitosan and fucoidan molecules. This curcumin-loading efficiency of the suspension system was investigated. The size and zeta potential distributions of novel curcumin-loaded chitosan nanoparticles self-assembled with fucoidan (CFNPLC) were assessed at various pH and fucoidan-to-chitosan mass ratio (FCMR). The release behavior of curcumin from CFNPLC was confirmed quantitatively by the superimposition of relevant release behavior. The release of curcumin from CFNPLC prepared with a chitosan solution of pH 6 for one to two days was slower than that from CFNPLC prepared with a chitosan solution of pH 3.7 for five to 10 hrs. This was attributed to the higher affinity of a chitosan molecule to curcumin molecules at a higher pH. The centrifugation of release medium accelerated the release of curcumin droplet from the surface of CFNPLC into the release medium much faster than a conventional curcumin release. Not to mention a high stability of curcumin blended with soybean oil, encapsulated in CFNPLC, the advantage of the CFNPLC is addressed in such a way that curcumin releasing period of a conventional curcumin delivery using CFNPLC, is supposed to be extended for much longer time than one to two days of the curcumin release period in this study. Thus, CFNPLC can bring about an enhanced effect of curcumin bioavailability resulting from the high curcumin stability and its extended release because it was dissolved in soybean oil and CFNPLC sustained slow curcumin-release for more than days in the oral drug (curcumin) delivery system. Therefore, CFNPLC can be treated mainly as a foodfunctional additive or healthy dietary product for tumor patients.
[References]
  1. Singh S, Khar A, Anticancer Agents Med Chem., 6(3), 259, 2006
  2. Lopes-Rodrigues V, Sousa E, Vasconcelos MH, Pharmaceuticals, 9(4), 71, 2016
  3. Guri A, Gulseren I, Arranz EA, Corredig M, J. Oleo Sci., 67(6), 641, 2018
  4. Yazdi SR, Bonomi F, Iametti S, Miriani M, Brutti A, Corredig M, J. Dairy Res., 80(2), 152, 2013
  5. Gulseren I, Fang Y, Corredig M, Food Funct., 3, 859, 2012
  6. Wang Y, Zhaoxin L, Fengxia L, Xiaomei B, Eur. Food Res. Tech., 229, 391, 2009
  7. Cas MD, Ghidoni R, Nutrients, 11(9), 2147, 2019
  8. Tiyaboonchai W, Tungpradit W, Plianbangchang P, Int. J. Pharm., 337, 299, 2007
  9. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q, Food Chem., 108(2), 419, 2008
  10. Guri A, Gulseren I, Corredig M, Food Funct., 4(9), 1410, 2013
  11. Gulseren I, Guri A, Corredig M, Food Funct., 5(6), 1218, 2014
  12. Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJ, Jabbari E, Linder M, Arab-Tehrany E, Int. J. Pharm., 461(1-2), 519, 2014
  13. Kharat M, Du Z, Zhang G, Mcclements DJ, J. Agric. Food Chem., 65(8), 1525, 2017
  14. Mondal S, Ghosh S, Moulik SP, J. Photochem. Photobiol. B-Biol., 158, 212, 2016
  15. Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH, Biomacromolecules, 12(7), 2440, 2011
  16. Lee EJ, et al., 17th International conference on composites or nano-engineering (ICCE-17) pp. 541-542. Honolulu, Hawaii, U. S. A.
  17. Lee EJ, Lim KH, Korean J. Chem. Eng., 31(4), 664, 2014
  18. Lee EJ, Lim KH, J. Biosci. Bioeng., 119(2), 237, 2014
  19. Lee EJ, Lim KH, J. Biosci. Bioeng., 121(1), 73, 2015
  20. Samrot AV, Burman U, Philip SA, Shobana N, Chandrasekaran K, Informatics in Medicine Unlocked, 10, 159 (2018).
  21. MofazzalJahromi MA, Al-Musawi S, Pirestani M, FasihiRamandi M, Ahmadi K, Rajayi H, Mohammad Z, HassanKamali M, Mirnejad R, Iran J. Biotech., 12(3), 1, 2014
  22. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F, Carbohydr. Polym., 95(1), 50, 2013
  23. Strand SP, Vandvik MS, Varum KM, Ostgaard K, Biomacromolecules, 2(1), 126, 2001
  24. Axberg C, Wennerburg AM, Stenius P, Progr. Water Tech., 12, 371, 1980
  25. Yin YJ, Yao KD, Cheng GX, Ma JB, Polym. Int., 48, 429, 1999
  26. Santos JE, Dockal ER, Cavalheiro ER, Carbohydr. Polym., 60(3), 277, 2005
  27. Yanming D, Congyi X, Jianwei W, Mian W, Yusong W, Yonghong R, Sci. China, Ser. B, 44, 216, 2001
  28. Skoog DA, Holler FA, Nieman T : A. Principles of instrument analysis, 5th Ed., Brooks/Cole, Belmont, CA, USA (1998).
  29. Yadav KSH, Satich CS, Shivakumar HG, Ind. J. Pharm. Sci., 69(1), 91, 2007
  30. Du J, Sun R, Zhang S, Zhang LF, Xiong CD, Peng YX, Biopolymers, 78(1), 1, 2005
  31. Chao AC, Shyu SS, Lin YC, Mi FL, Bioresour. Technol., 91(2), 157, 2004
  32. Grant J, Blicker M, Piquette-Miller M, Allen C, J. Pharm. Sci., 94, 1512, 2005
  33. Zonggang C, Xiumei M, Fengling Q, Mater. Lett., 61(16), 3490, 2007
  34. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher AM, Vidal CB, Carbohydr. Res., 319(1-4), 154, 1999
  35. Berteau O, Mulloy B, Glycobiology, 13(6), 29, 2003
  36. Lee JI, Jung HJ, J. Korean Chem. Soc., 49(6), 609, 2005
  37. Lee J, J. Pharm. Sci., 92(10), 2057, 2003
  38. Le TMP, Pham VPP, Dang TML, La TH, Le TH, Le QH, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, 025001 (2013).
  39. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK, J. Pharm. Biomed Anal., 15(12), 1867, 1997
  40. Naksuriyavan O, Steenbergen MJ, Torano JS, Okonogi S, Hennink WE, AAPS J., 18(3), 777, 2016
  41. Bhatia N, Kishor S, Katyal N, Gogoi P, Narang P, Deep S, RSC Adv., 6(105), 103275, 2016
  42. Mitra SP, J. Surf. Sci. Technol., 24(1), 39, 2008