Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 342-353, 2021
A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor
For the long-term dynamic simulation of a fluidized bed reactor (FBR), a two-way coupled computational fluid dynamics (CFD)-direct quadrature method of moments (DQMOM) approach is proposed. In this approach, CFD is first used only for hydrodynamic information without simulating any other chemical reactions or physical phenomena. Subsequently, the derived information is applied to the DQMOM calculation in MATLAB. From the calculation, a particle size distribution is obtained and subsequently adopted in a new CFD model to reflect the flow change caused by a change in the particle size distribution. Through several iterative calculations, long-term dynamic simulations are performed. To evaluate the efficacy of the proposed approach, the results from the suggested approach are compared for 60 s with those of the CFD-quadrature method of moments (QMOM) approach, which calculates hydrodynamics and physical phenomena simultaneously in CFD. The proposed approach successfully simulated the FBR for 6 h. The results confirmed that the proposed method can simulate complex flow patterns, which cannot be obtained in conventional CFD models. Another advantage of the approach is that it can be applied to various industrial multiphase reactors without any tuning parameters.
[References]
  1. Kiparissides C, J. Process Control, 16(3), 205, 2006
  2. Yan WC, Luo ZH, Lu YH, Chen XD, AIChE J., 58(6), 1717, 2012
  3. Che Y, Tian Z, Liu Z, Zhang R, Gao YX, Zou EG, Wang SH, Liu BP, Powder Technol., 286, 107, 2015
  4. Randolph AD, Larson MA, Theory of particulate processes: Analysis and techniques of continuous crystallization, Academic Press Inc., New York (1971).
  5. Grace JR, Taghipour F, Powder Technol., 139(2), 99, 2004
  6. Torre JP, Fletcher DF, Lasuye T, Xuereb C, Chem. Eng. Sci., 62(22), 6246, 2007
  7. Jung JW, Gamwo IK, Powder Technol., 183(3), 401, 2008
  8. Mendoza JA, Hwang S, Korean J. Chem. Eng., 35, 11, 2018
  9. Kerdouss F, Bannari A, Proulx P, Chem. Eng. Sci., 61(10), 3313, 2006
  10. Park S, Na J, Kim M, An J, Lee C, Han C, Korean Chem. Eng. Res., 54(5), 612, 2016
  11. Jurtz N, Kraume M, Wehinger GD, Rev. Chem. Eng., 35(2), 139, 2019
  12. Kim M, Na J, Park S, Park JH, Han C, Chem. Eng. Sci., 177, 301, 2018
  13. Zimmermann S, Taghipour F, Ind. Eng. Chem. Res., 44(26), 9818, 2005
  14. Park S, Na J, Kim M, Lee JM, Comput. Chem. Eng., 119, 25, 2018
  15. Fan R, Marchisio DL, Fox RO, Powder Technol., 139(1), 7, 2004
  16. Liu SS, Xiao WD, Chem. Eng. Sci., 111, 112, 2014
  17. Yao Y, He YJ, Luo ZH, Shi L, Adv. Powder Technol., 25(5), 1474, 2014
  18. Yao Y, Su JW, Luo ZH, Powder Technol., 272, 142, 2015
  19. Alopaeus V, Laakkonen M, Aittamaa J, Chem. Eng. Sci., 61(20), 6732, 2006
  20. Marchisio DL, Barresi AA, Garbero M, AIChE J., 48(9), 2039, 2002
  21. Akroyd J, Smith AJ, McGlashan LR, Kraft M, Chem. Eng. Sci., 65(6), 1915, 2010
  22. Li Z, Kessel J, Grunewald G, Kind M, Drying Technol., 31, 1888, 2013
  23. Delafosse A, Collignon ML, Calvo S, Delvigne F, Crine M, Thonart P, Toye D, Chem. Eng. Sci., 106, 76, 2014
  24. Gresch M, Brugger R, Meyer A, Gujer W, Environ. Sci. Technol., 43, 2381, 2009
  25. Norregaard A, Bach C, Kruhne U, Borgbjerg U, Gernaey KV, Chem. Eng. J., 356, 161, 2019
  26. Shah Y, Kelkar BG, Godbole S, Deckwer WD, AIChE J., 28, 353, 1982
  27. Yang S, Kiang S, Farzan P, Ierapetritou M, Processes, 7, 9, 2019
  28. Kim M, Park S, Lee D, Lim S, Park M, Lee JM, Chem. Eng. J., 395, 125034, 2020
  29. Bezzo F, Macchietto S, Pantelides CC, AIChE J., 49(8), 2133, 2003
  30. Zhao WL, Buffo A, Alopaeus V, Han B, Louhi-Kultanen M, AIChE J., 63(1), 378, 2017
  31. Hatzantonis H, Goulas A, Kiparissides C, Chem. Eng. Sci., 53(18), 3251, 1998
  32. Marchisio DL, Fox RO, J. Aerosol Sci., 36(1), 43, 2005
  33. Marchisio DL, Vigil RD, Fox RO, J. Colloid Interface Sci., 258(2), 322, 2003
  34. Marchisio DL, Vigil RD, Fox RO, Chem. Eng. Sci., 58(15), 3337, 2003
  35. Gordon RG, J. Math. Phys., 9, 655, 1968
  36. Metzger L, Kind M, Chem. Eng. Sci., 169, 284, 2017
  37. Shamiri A, Hussain MA, Mjalli FS, Mostoufi N, Chem. Eng. J., 161(1-2), 240, 2010
  38. Fan R, Ph.D. thesis, Iowa State University, Ames, IA (2006).
  39. Niemi TJ, thesis MS, Aalto University (2012).
  40. Chen C, Dai QT, Qi HY, Chem. Eng. Sci., 141, 8, 2016
  41. Qi HY, Li F, Xi B, You CF, Chem. Eng. Sci., 62(6), 1670, 2007
  42. Zhou Q, Wang JW, Chem. Eng. Sci., 122, 637, 2015
  43. Vejahati F, Mahinpey N, Ellis N, Nikoo MB, Can. J. Chem. Eng., 87(1), 19, 2009
  44. Esmaili E, Mahinpey N, Adv. Eng. Software, 42, 375, 2011
  45. Ghadirian E, Arastoopour H, Powder Technol., 288, 35, 2016