Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 204-214, 2021
Detrimental effect of industrial toluene organic impurities on the density of rigid polyurethane foam and their removal
The undesirable influence of organic impurities in toluene feedstock has been investigated on purity of synthesized Toluene diisocyanate and density of rigid polyurethane foam. Xylene, Ethyl cyclopentane, and Methyl benzothiophene were considered to represent three classes of impurities, including aromatics, non-aromatics, and sulfurcompounds, respectively. Statistical design of experiment using response surface methodology was applied for the quantification of the data acquired in pilot scale using impure Toluene model. Results showed that the concentration of 2-Nitro-4-isocyanatotoluene impurity in toluene diisocyanate and density of foam increased by 470% and 42%, respectively, for the examined rate of toluene impurity. Moreover, SEM graphs revealed that cell size and number of closedcells decreased by ~55%, producing more open cells. Ethyl cyclopentane had the most effect (74.4%) on density among the variables investigated. Subsequently, an activated carbon-based adsorptive process was implemented in laboratory batch mode at 20±1 °C to achieve an appropriate level of impurity in industrial-grade toluene. The simultaneous-competitive adsorption of three classes of described impurities was carried out and the highest adsorption capacity of 7.3, 47.4, and 161.5mg/g was achieved for aromatics, non-aromatics, and sulfur compounds, respectively. The Langmuir isotherm model exhibits satisfactory equilibrium data for non-aromatics and sulfur compounds and for aromatics the Freundlich was the best one.
[References]
  1. Singh H, Sharma TP, Jain AK, J. Appl. Polym. Sci., 106(2), 1014, 2007
  2. Cinelli P, Anguillesi I, Lazzeri A, Eur. Polym. J., 49, 1174, 2013
  3. Zhang G, Zhang Q, Wu Y, Zhang H, Cao J, Han D, J. Appl. Polym. Sci., 134, 45582, 2017
  4. Mondal P, Khakhar DV, J. Appl. Polym. Sci., 93(6), 2830, 2004
  5. Kim SH, Kim BK, Lim H, Macromol. Res., 16(5), 467, 2008
  6. Ferkl P, Krskova I, Kosek J, Chem. Eng. Sci., 176, 50, 2018
  7. Gama NV, Ferreira A, Barros-Timmons A, Materials, 11, 1841, 2018
  8. Ashida K, CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA (2006).
  9. Lim H, Kim SH, Kim BK, Polym. Adv. Technol., 19, 1729, 2008
  10. Zuber M, Zia KM, Iqbal MA, Cheema ZT, Ishaq M, Jamil T, Korean J. Chem. Eng., 32(1), 184, 2015
  11. Javni I, Zhang W, Petrovic ZS, J. Appl. Polym. Sci., 88(13), 2912, 2003
  12. Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow WK, Polymer Plast. Technol. Eng., 45, 95, 2006
  13. Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jamal MA, Korean J. Chem. Eng., 31(4), 644, 2014
  14. Allport DC, Gilbert DC, Outterside SM, MDI and TDI, John Wiley & Sons Ltd., Chichester, West Sussex, England (2003).
  15. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP, J. Appl. Polym. Sci., 108(3), 1810, 2008
  16. Belkadi A, Edouard D, Chem. Eng. Process: Process Intensif., 86, 64, 2014
  17. Seo WJ, Jung HC, Hyun JC, Kim WN, Lee YB, Choe KH, Kim SB, J. Appl. Polym. Sci., 90(1), 12, 2003
  18. Lee CH, Kim KJ, Ryu SK, J. Chem. Eng. Jpn., 25, 585, 1992
  19. Hou Y, Xu L, Wei Z, Liu Y, Li X, Deng S, J. Taiwan Inst. Chem. Eng., 45, 1428, 2014
  20. HG/T 2409, Determination of isocyanate group content in polyurethane performed polymer (1992).
  21. ASTM D1622-08, Standard Test Method for Apparent Density of Rigid Cellular Plastics (2008).
  22. ASTM D2850-15, Standard Test Method for Unconsolidatedundrained Triaxial Compression Test on Cohesive Soils (2007).
  23. Behin J, Akbari A, Mahmoudi M, Khajeh M, Water. Res., 121, 120, 2017
  24. Marsavina L, Constantinescu DM, Linul E, Voiconi T, Apostol DA, Eng. Failure Anal., 58, 465, 2015
  25. Sung GW, Choe H, Choi YS, Kim JH, Korean J. Chem. Eng., 35(4), 1045, 2018
  26. Noreen A, Zia KM, Zuber M, Tabasum S, Saif MJ, Korean J. Chem. Eng., 33(2), 388, 2016
  27. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP, J. Appl. Polym. Sci., 108(3), 1810, 2008
  28. Sung G, Kim JH, Korean J. Chem. Eng., 34, 1222, 2016
  29. Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S, Eur. Polym. J., 87, 535, 2017
  30. Huo S, Wu G, Chen J, Liu G, Kong Z, Korean J. Chem. Eng., 33(3), 1088, 2016
  31. Sakanishi K, Farag H, Sato S, Matsumura A, Saito I, Am. Chem. Soc. Div. Fuel Chem., 48, 524, 2003
  32. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 43, 1758, 2005
  33. Moreno-Castilla C, Carbon, 42, 83, 2004
  34. Dowaidar AM, EI-Shahawi MS, Ashour I, Sep. Sci. Technol., 42(16), 3609, 2007
  35. Li L, Sun Z, Li H, Keener TC, J. Air Waste Manag. Assoc., 62, 1196, 2012
  36. Patil SV, Sorokhaibam LG, Bhandari VM, Killedar DJ, Ranade VV, J. Environ. Chem. Eng., 2, 1495, 2014
  37. Fayazi M, Taher MA, Afzali D, Mostafavi A, Anal. Bioanal. Chem. Res., 2, 73, 2015
  38. Fei L, Rui J, Wang R, Lu Y, Yang X, RSC Adv., 7, 23011, 2017
  39. Han JT, Jeong SY, Jeong HJ, Lee GW, Polym. Sci. Technol., 22, 137 (2011).
  40. Lee JS, Kim BA, Moon CK, J. Korean Soc. Power Syst. Eng., 18, 7, 2014
  41. Seki Y, Altinisik A, Demircioglu B, Tetik C, Cellulose, 21, 1689, 2014
  42. Alla SGA, Sen M, El-Naggar AWM, Carbohydr. Polym., 89, 478, 2012
  43. Salmawi KME, Ibrahim SM, Macromol. Res., 19(10), 1029, 2011