Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 195-203, 2021
Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions
Thermal integration in a reactive dividing wall column (RDWC) can dramatically reduce energy consumption. This study, however, addresses unfavorable energy integration of the concurrent esterification of butyl, amyl, and hexyl alcohols in the RDWC. The reaction kinetics and vapor-liquid-liquid equilibrium of reactive mixtures are utilized to assess the feasibility of energy integration in a multi-partitioned RDWC. The thermal integration effect of an RDWC is elucidated by comparing its energy efficiency with that of the direct sequential configuration of a reactive distillation column followed by a non-reactive distillation column. The unfavorable thermal integration in the RDWC originates from the large internal flow to satisfy the product purities. Therefore, a single RDWC sequence showed higher energy consumption and total annual cost than the direct RD sequence for the simultaneous triple esterification.
[References]
  1. Stankiewicz AI, Moulijn JA, Chem. Eng. Prog., 96(1), 22, 2000
  2. Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926, 2018
  3. Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41, 2016
  4. Long NVD, Lee S, Lee M, Chem. Eng. Process. Process Intensif., 49, 825, 2010
  5. Malone F, Doherty MF, Ind. Eng. Chem. Res., 39, 3953, 2000
  6. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953, 2000
  7. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965, 2000
  8. Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680, 2019
  9. Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105, 1997
  10. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162, 2003
  11. Qasim F, Shin JS, Park SJ, Korean J. Chem. Eng., 35(5), 1185, 2018
  12. Lee JW, Westerberg AW, AIChE J., 47(6), 1333, 2001
  13. Hiwale RS, Bhate NV, Mahajan YS, Mahajani SM, Int. J. Chem. React. Eng., 2, 1, 2004
  14. Navarro MA, Javaloyes J, Caballero JA, Grossmann IE, Comput. Chem. Eng., 36, 149, 2012
  15. Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403, 2011
  16. Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048, 2020
  17. Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709, 2007
  18. Kang D, Lee JW, Ind. Eng. Chem. Res., 54(12), 3175, 2015
  19. Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954, 2019
  20. Li HS, Li T, Li CL, Fang J, Dong LH, Chin. J. Chem. Eng., 27(1), 136, 2019
  21. Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74, 2012
  22. Zheng L, Cai WF, Zhang XB, Wang Y, Chem. Eng. Process., 111, 127, 2017
  23. Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206, 2019
  24. Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966, 2020
  25. Lee MJ, Wu HT, Lin HM, Ind. Eng. Chem. Res., 39(11), 4094, 2000
  26. Schmitt M, Hasse H, Ind. Eng. Chem. Res., 45(12), 4123, 2006
  27. Wu YC, Lee HY, Lee CH, Huang HP, Chien IL, Ind. Eng. Chem. Res., 52(48), 17184, 2013
  28. Lee HY, Yen LT, Chien IL, Huang HP, Ind. Eng. Chem. Res., 48(15), 7186, 2009
  29. Mutalib MIA, Smith R, Chem. Eng. Res. Des., 76(3), 308, 1998
  30. Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).