Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 170-178, 2021
Electrochemical analysis on how structural and compositional modification of electrode affects power generation in reverse electrodialysis
We suggest a modified Ti-based electrode for reverse electrodialysis to increase power density and retain long-term durability. Specifically, a mesh-type Ti electrode and electrochemically fabricated Pt/Ti electrode are employed in the reverse electrodialysis single cell. The electrode systems are compared in terms of power output, resistance, specific capacitance, and redox-couple reaction kinetics near the electrode surface. Among the electrodes, Pt/Ti meshembedded cell exhibits the highest jmax (-16.13 A m-2) and Pmax (-0.702 W m-2). The improvement in performance is ascribed to the reduced resistance associated with heterogeneous charge transfer and to the enlarged electrochemical surface area, verified by impedance analysis, and by monitoring the capacitive behavior of the electrodes, respectively. The highest exchange current density of Pt/Ti mesh electrode is attributed to facile electron transfer and reduced power loss in the electrode compartment. Furthermore, the Pt/Ti mesh electrode allows stable operation of reverse electrodialysis for an extended time. Finally, we demonstrate the power generation of a reverse electrodialysis stack built up with multiple pairs of ion exchange membranes for potential commercial application.
[References]
  1. Pattle RE, Nature, 174, 660, 1954
  2. Loeb S, Norman RS, Science, 189, 654, 1975
  3. Loeb S, J. Membr. Sci., 1, 49, 1976
  4. Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103, 2009
  5. Pattle RE, Chem. Prog. Eng., 35, 351, 1955
  6. Wick GL, Schmitt WR, Mar. Technol. Soc. J., 11, 16, 1977
  7. Post JW, Hamelers HVM, Buisman CJN, Environ. Sci. Technol., 42, 5785, 2008
  8. Veerman J, Saakes M, Metz SJ, Harmsen GJ, Chem. Eng. J., 166(1), 256, 2011
  9. Weinstein JN, Leitz FB, Science, 191, 557, 1976
  10. Lacey RE, Ocean Engng., 7, 1, 1980
  11. Dlugolecki P, Nymeijer K, Metz S, Wessling M, J. Membr. Sci., 319(1-2), 214, 2008
  12. Veerman J, de Jong RM, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 343(1-2), 7, 2009
  13. Vermass DA, Saakes M, Nijmeijer K, J. Membr. Sci., 385-386, 234, 2011
  14. Vermaas DA, Saakes M, Nijmeijer K, J. Membr. Sci., 453, 312, 2014
  15. Guler E, Elizen R, Saakes M, Nijmeijer K, J. Membr. Sci., 458, 136, 2014
  16. Kwon K, Lee SJ, Li L, Han C, Kim D, Int. J. Energy Res., 38, 530, 2014
  17. Hong JG, Chen YS, J. Membr. Sci., 460, 139, 2014
  18. Guler E, Zhang Y, Saakes M, Nijmeijer K, ChemSusChem, 5, 2262, 2012
  19. Dlugolecki P, Gambier A, Nijmeijer K, Wessling M, Environ. Sci. Technol., 43, 6888, 2009
  20. Vermass DA, Saakes M, Nijmeijer K, Environ. Sci. Technol., 45, 7089, 2011
  21. Dlugolecki P, Dabrowska J, Nijmeijer K, Wessling M, J. Membr. Sci., 347(1-2), 101, 2010
  22. Balster J, Stamatialis DF, Wessling M, J. Membr. Sci., 360(1-2), 185, 2010
  23. Kim DK, Duan C, Chem YF, Majumdar A, Microfluid. Nanofluid., 9, 1215, 2010
  24. Jagur-Grodzinski J, Kramer R, Ind. Eng. Chem. Process. Des. Dev., 25, 443, 1986
  25. Turek M, Bandura B, Desalination, 205(1-3), 67, 2007
  26. Veerman J, Post JW, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 310(1-2), 418, 2008
  27. Veerman J, Saakes M, Metz SJ, Harmsen GJ, J. Appl. Electrochem., 40(8), 1461, 2010
  28. Burheim OS, Seland F, Pharoah JG, Kjelstrup S, Desalination, 285, 147, 2012
  29. Scialdone O, Guarisco C, Grispo S, D' Angelo A, Galia A, J. Electroanal. Chem., 681, 66, 2012
  30. Suda F, Matsuo T, Ushioda D, Energy, 32(3), 165, 2007
  31. Vermass DA, Bajracharya S, Sales BB, Saakes M, Hamelers B, Nijmeijer K, Energy Environ. Sci., 6, 643, 2013
  32. Choi I, Han JY, Yoo SJ, Henkensmeier D, Kim JY, Lee SY, Han J, Nam SW, Kim HJ, Jang JH, Bull. Kor. Chem. Soc., 37, 1010, 2016
  33. Kim KS, Ryoo W, Chun MS, Chung GY, Desalination, 318, 79, 2013
  34. Pawlowski S, Crespo JG, Velizarov S, J. Membr. Sci., 462, 96, 2014
  35. Vermass DA, Veerman J, Yip NY, Elimelech M, Saakes M, Nijmeijer K, ACS Sustain. Chem. Eng., 1, 1295, 2013
  36. Gurreri L, Tamburini A, Cipollina A, Micale G, Ciofalo M, J. Membr. Sci., 468, 133, 2014
  37. Tedesco M, Cipollina A, Tamburini A, Bogle IDL, Micale G, Chem. Eng. Res. Des., 93, 441, 2015
  38. Tedesco M, Cipollina A, Tamburini A, van Baak W, Micale G, Desalin. Water Treat., 49, 404, 2012
  39. Hong JG, Zhang W, Luo J, Chen YS, Appl. Energy, 110, 244, 2013
  40. Audinos R, J. Power Sources, 10, 203, 1983
  41. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547, 2018
  42. Zhuo K, An CY, Kannan PK, Seo N, Park YS, Chung CH, Korean J. Chem. Eng., 34(5), 1483, 2017
  43. Daniilidis A, Vermaas DA, Herber R, Nijmeijer K, Renew. Energy, 64, 123, 2014
  44. Zhu XP, He WH, Logan BE, J. Membr. Sci., 494, 154, 2015
  45. Park JS, Choi JH, Woo JJ, Moon SH, J. Colloid Interface Sci., 300(2), 655, 2006
  46. Quere D, Annu. Rev. Mater. Res., 38, 71, 2008
  47. Hitchcock SJ, Carroll NT, Nicholas MG, J. Mater. Sci., 16, 714, 1981