Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 163-169, 2021
Synthesis and photocatalytic performance of Bi2WO6/BiOX (X=Cl, Br, I) composites for RhB degradation under visible light
The present study examined the effects of adding bismuth oxyhalides, BiOCl, BiOBr and BiOI, on the photocatalytic properties of Bi2WO6. The samples were synthesized using a simple one-stage hydrothermal method. The samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), diffused reflectance spectroscopy (DRS) and the nitrogen absorption/desorption technique. The activity of the products on the photocatalytic degradation of an aqueous Rhodamine B (RhB) solution was then investigated under visible light irradiation. The results showed the higher photocatalytic efficiency of the hybrid Bi2WO6/BiOBr sample compared to that of other compounds, as approximately 97% of RhB molecules were degraded after 80minutes of irradiation in the presence of this sample. Under the same conditions, pure Bi2WO6 and hybrid samples of Bi2WO6/BiOCl and Bi2WO6/BiOI, respectively, degraded 40%, 60% and 20% of dye molecules in the solution. The better performance of this sample compared to that of the others can be explained by its larger effective surface area and the strong interaction between Bi2WO6 and BiOBr. Furthermore, a test conducted to determine active species in photocatalytic reactions showed that superoxide radicals played the main role in the degradation of RhB molecules by hybrid Bi2WO6/BiOBr photocatalyst.
[References]
  1. Jiang ZY, Liang XZ, Liu YY, Jing T, Wang ZY, Zhang XY, Qin XY, Dai Y, Huang BB, Appl. Catal. B: Environ., 211, 252, 2017
  2. Tian J, Sang YH, Yu GW, Jiang HD, Mu XN, Liu H, Adv. Mater., 25(36), 5075, 2013
  3. Cho YS, LEe HJ, Sung SH, Korean J. Chem. Eng., 37(6), 1071, 2020
  4. Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann DW, Pan JH, Catal. Today, 335, 78, 209
  5. Zerjav G, Arshad MS, Djinovic P, JunKar I, Kovac J, Zavasnik J, Pintar A, Nanoscale, 9, 4578, 2017
  6. Liu H, Cao WR, Su Y, Chen Z, Wang Y, J. Colloid Interface Sci., 398, 161, 2013
  7. Tsuji I, Kato H, Kudo A, Chem. Mater., 18, 1969, 2006
  8. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000, 2016
  9. Saison T, Gras P, Chemin N, Chaneac C, Durupthy D, Brezova V, Colbeau-Justin C, Jolivet JP, J. Phys. Chem. C, 117, 22656, 2013
  10. Jia Y, Lin Y, Ma Y, Shi W, Mater. Lett., 234, 83, 2019
  11. Wang CH, Shao CL, Wang LJ, Zhang L, Li XH, Liu YC, J. Colloid Interface Sci., 333(1), 242, 2009
  12. Ge M, Li Y, Liu L, Zhou Z, Chen W, J. Phys. Chem. C, 115, 5220, 2011
  13. Yang AM, Han Y, Li SS, Xing HW, Pan YH, Liu WX, J. Alloy. Compd., 695, 915, 2017
  14. Kaur Amandeep, Kansal Sushil Kumar, Chem. Eng. J., 302, 194, 2016
  15. Nie ZP, Ma DK, Fang GY, Chen W, Huang SM, J. Mater. Chem. A, 4, 2438, 2016
  16. Zhang N, Ciriminna R, Pagliaro M, Xu YJ, Chem. Soc. Rev., 43, 5276, 2014
  17. Xu F, Xu C, Chen H, Wu D, Gao Z, Ma X, Zhang Q, Jiang K, J. Alloy. Compd., 780, 634, 2019
  18. Xu F, Chen HM, Xu CY, Wu DP, Gao ZY, Zhang Q, Jiang K, J. Colloid Interface Sci., 525, 97, 2018
  19. Zhang C, Zhu Y, Chem. Mater., 17, 3537, 2005
  20. Shivani V, Harish S, Archana J, Navaneethan M, Ponnusamy S, Hayakawa Y, Appl. Surf. Sci., 488, 696, 2019
  21. Hu SP, Xu CY, Zhen L, Mater. Lett., 95, 117, 2013
  22. Li Z, Zhu LY, Wu W, Wang SF, Qiang LW, Appl. Catal. B: Environ., 192, 277, 2016
  23. Guo Y, Wei J, Yang T, Lv Z, Xu Z, Optik, 180, 285, 2019
  24. Zhang ZJ, Wang WZ, Gao EP, Shang M, Xu JH, J. Hazard. Mater., 196, 255, 2011
  25. Zhou HR, Wen ZP, Liu J, Ke J, Duan XG, Wang SB, Appl. Catal. B: Environ., 242, 76, 2019
  26. Chaiwichian S, Inceesungvorn B, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N, Mater. Res. Bull., 54, 28, 2014
  27. Wang FJ, Gu YY, Yang ZY, Xie YY, Zhang JJ, Shang XT, Zhao HB, Zhang ZZ, Wang XX, Appl. Catal. A: Gen., 567, 65, 2018
  28. Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Xiong W, Adv. Colloid Interface Sci., 254, 76, 2018
  29. Durgalakshmi D, et al., Graphene-Based Electrochemical Sensors for Biomolecules, Elsevier, New York (2019).
  30. Kumar A, Nanda D, Superhydrophobic Polymer Coatings, Elsevier, New York (2019).
  31. Chen L, Huang R, Xiong M, Yuan Q, He J, Jia J, Yao MY, Luo SL, Au CT, Yin SF, Inorg. Chem., 52(19), 11118, 2013
  32. Xiong J, Cheng G, Li G, Qin F, Chen R, RSC Adv., 1, 1542, 2011
  33. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing S, Pure Appl. Chem., 87, 1051, 2015
  34. Jiang ZY, Liang XZ, Liu YY, Jing T, Wang ZY, Zhang XY, Qin XY, Dai Y, Huang BB, Appl. Catal. B: Environ., 211, 252, 2017
  35. Huang LC, Fang WC, Yang Y, Wu J, Yu H, Dong XT, Wang TT, Liu ZL, Zhao B, Mater. Res. Bull., 108, 38, 2018
  36. Zhang L, Niu CG, Xie GX, Wen XJ, Zhang XG, Zeng GM, ACS Sust. Chem. Eng., 5, 4619, 2017
  37. Lu L, Zhou MY, Yin L, Zhou GW, Jiang T, Wan XK, Shi HX, J. Mol. Catal. A-Chem., 423, 379, 2016
  38. Meng X, Zhang Z, J. Photochem. Photobiol. A-Chem., 310, 33, 2015
  39. Intaphong P, Phuruangrat A, Thongtem S, Thongtem T, Mater. Lett., 213, 88, 2018
  40. Sun Q, Jia X, Wang X, Yu H, Yu J, Dalton Trans., 44, 14532, 2015
  41. Tahmasebi N, Maleki Z, Farahnak P, Mater. Sci. Semicond. Process, 89, 32, 2019
  42. Jia XM, Cao J, Lin HL, Zhang MY, Guo XM, Chen SF, Appl. Catal. B: Environ., 204, 505, 2017
  43. Ao Y, Wang K, Wang P, Wang C, Hou J, RSC Adv., 6, 48599, 2016
  44. Wang K, Shao C, Li X, Zhang X, Lu N, Miao F, Liu Y, Catal. Commun., 67, 6, 2015