Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 152-162, 2021
Nickel-cobalt alloy coatings prepared by electrodeposition Part II: Morphology, structure, microhardness, and electrochemical studies
A study was carried out to synthesize Ni-Co alloy coatings electrochemically from complex acidic glycine (gly) bath. The impacts of some operating parameters such as Co2+ to Ni2+ concentration ratios in the bath, gly concentrations, pH, applied current, plating time and temperature on the morphology of Ni-Co alloy were investigated. The microstructure, microhardness, and electrochemical studies were also investigated. The electrochemical studies utilized cyclic voltammetry, anodic linear stripping voltammetry, and potentiostatic current-time transient techniques. It was realized that gly lowers the cathodic overvoltage for the Co2+ deposition while promoting cathodic overvoltage of Ni2+ deposition. Accordingly, the concurrent codeposition of Co2+ and Ni2+ ions was simplified. The morphology of Ni-Co alloy is significantly dependent on the operating parameters rather than on the bath composition. Moreover, increasing either pH or bath temperature produces Ni-Co deposits free from cracking. The roughness of the alloy is decreased in the presence of gly as shown by the atomic force microscope (AFM) study. In the presence of gly, the microhardness increases from 387 to 970 kg f mm?2, i.e., it increased more than two-and-a-half times. On the other hand, X-ray diffraction analysis (XRD) data show that the crystallinity decreases with enhancing the percentage of cobalt in the deposits.
[References]
  1. Wang GF, Chan KC, Zhang KF, Scr. Mater., 54, 765, 2006
  2. Chang LM, An MZ, Guo HF, Shi SY, Appl. Surf. Sci., 253(4), 2132, 2006
  3. Wang LP, Gao Y, Xue QJ, Liu HW, Xu T, Appl. Surf. Sci., 242(3-4), 326, 2005
  4. Qiao GY, Jing TF, Wang N, Gao YW, Zhao X, Zhou JF, Wang W, Electrochim. Acta, 51(1), 85, 2005
  5. Vasefi S, Parvari M, Korean J. Chem. Eng., 27(2), 422, 2010
  6. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547, 2018
  7. Golodnitsky D, Rosenberg Y, Ulus A, Electrochim. Acta, 47(17), 2707, 2002
  8. Kim D, Park DY, Yoo BY, Sumodjo PTA, Myung NV, Electrochim. Acta, 48(7), 819, 2003
  9. Karimzadeha A, Aliofkhazraeia M, Walsh FC, Surf. Coat. Technol., 372, 463, 2019
  10. Lupi C, Dilone D, Miner. Eng., 14(11), 1403, 2001
  11. Idris J, Christian C, Gaius E, J. Nanomaterials, 2013, 1, 2013
  12. Correia AN, Machado SAS, J. Appl. Electrochem., 33(5), 367, 2003
  13. Schwartz M, Myung NV, Nobe K, J. Electrochem. Soc., 151(7), C468, 2004
  14. Tian LL, Xu JC, Qiang CW, Appl. Surf. Sci., 257(10), 4689, 2011
  15. Farzaneh MA, Zamanzad-Ghavidel MR, Raeissi K, Golozar MA, Saatchi A, Kabi S, Appl. Surf. Sci., 257(13), 5919, 2011
  16. El-Feky H, Negem M, Roy S, Helal N, Baraka A, Sci. China. Chem., 56(10), 1446, 2013
  17. Sanaty-Zadeh A, Raeissi K, Saidi A, J. Alloy. Compd., 485(1-2), 402, 2009
  18. Qiao GY, Jing TF, Wang N, Gao YW, Zhao X, Zhou JF, Wang W, J. Electrochem. Soc., 153(5), C305, 2006
  19. Gomez E, Pane S, Valles E, Electrochim. Acta, 51(1), 146, 2005
  20. Gomez E, Pellicer E, Valles E, J. Electroanal. Chem., 580(2), 222, 2005
  21. Golodnitsky D, Gudin NV, Volyanuk GA, J. Electrochem. Soc., 147(11), 4156, 2000
  22. Hassani S, Raeissi K, Golozar MA, J. Appl. Electrochem., 38(5), 689, 2008
  23. Vijayakumar J, Mohan S, Yadav SS, J. Alloy. Compd., 509, 9692, 2011
  24. Ibrahim MAM, Al Radadi RM, Int. J. Electrochem. Sci., 10, 4946, 2015
  25. Ibrahim M, Al Radadi RM, Mat. Chem. Phys., 151, 222, 2015
  26. Al Radadi RM, Ibrahim MAM, Korean J. Chem. Eng., in press.
  27. Taranina OA, Evreinova NV, Shoshina IA, Naraev VN, Tikhonov KI, Russ. J. Appl. Chem., 83(1), 58, 2010
  28. Zhang YH, Feng L, Qiu W, J. Mater. Sci., 54(13), 9507, 2019
  29. Gharahcheshmeh MH, Sohi MH, J. Appl. Electrochem., 40(8), 1563, 2010
  30. Wei JC, Schwartz M, Nobe K, J. Electrochem. Soc., 155(10), D660, 2008
  31. Boiadjieva T, Kovacheva D, Lyutov L, Monev M, J. Appl. Electrochem., 38(10), 1435, 2008
  32. Lacnjevac U, Jovic BM, Jovic VD, J. Electrochem. Soc., 159(5), D310, 2012
  33. Messaoudi Y, Fenineche N, Guittoum A, Azizi A, Schmerber G, Dinia A, J. Mater. Sci. Mater. Electron., 24, 2962, 2013
  34. Abd El Maguid EA, Abd El Rehim SS, Mostafa EM, Trans. IMF, 77, 188, 1999
  35. Cui CQ, Jiang SP, Tseung ACC, J. Electrochem. Soc., 137, 3418, 1990
  36. Swathirajan S, J. Electrochem. Soc., 133, 671, 1986
  37. Fratesi R, Roventi G, Giuliani G, Tomachuk CR, J. Appl. Electrochem., 27(9), 1088, 1997
  38. Lupi C, Dellera A, Pasquali M, Imperatori P, Surf. Coat. Technol., 205, 5394, 2011
  39. Kharmachi I, Dhouibi L, Bercot P, Rezrazi M, J. Mater. Environ. Sci., 7(5), 1670, 2016
  40. Abd El Rehim SS, Ibrahim MAM, Dankeria MM, Emad M, Trans. IMF, 80(3), 105, 2002
  41. Hagarova M, Jakubeczyova D, Cervova J, Int. J. Electrochem. Sci., 10, 9968, 2015
  42. Ma C, Wang SC, Walsh FC, Trans IMF, 93(2), 104, 2015