Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 114-120, 2021
Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma
Surface modification of thin-film nanofiltration membranes was carried out to produce high water permeable NF membranes by Air-Ar plasma treatment. The effect of composition of used gases on membrane properties was investigated. Results showed that the plasma treatment decreased the water contact angle obviously from 80.4° to 6.5°, which in turn would increase the membrane surface hydrophilicity. The results of FTIR spectra decisively confirmed the formation of hydrophilic nitrogen and oxygen compounds on the membrane surface. The SEM images of membrane surface also showed significant changes after plasma treatment. AFM analysis indicated smoother surface for the modified membranes compared to pristine membrane; the roughness declined from 55.85 nm for virgin membrane to 28.33 nm for modified membranes. The salt rejection was 90% for pristine membrane and 76.35% to 92.45% for the plasma treated membranes. The water flux for modified membrane treated by 50% Air-50% Ar plasma increased ~1,446.1% compared to the virgin membrane, whereas the selectivity declined only ~15.1%.
[References]
  1. Adamson AW, Gast AP, Physical chemistry of surfaces, Wiley-Interscience, New York (1997).
  2. Luque-Alled JM, Abdel-Karim A, Alberto M, Leaper S, Perez-Page M, et al., Sep. Purif. Technol., 230, 115836, 2020
  3. Khoee S, Bageri Y, Polymerization, 5, 16, 2015
  4. Shahmirzadi MA, Hosseini SS, Ruan G, Tan NR, RSC Adv., 5, 49080, 2015
  5. Zhao C, Xue J, Ran F, Sun S, Prog. Mater Sci., 58, 76, 2013
  6. Luo ML, Zhao JQ, Tang W, Pu CS, Appl. Surf. Sci., 249(1-4), 76, 2005
  7. Hosseini SS, Torbati SF, Shahmirzadi MA, Tavangar T, Polym. Adv. Technol., 29, 2619, 2018
  8. Amiri F, Moghadassi AR, Bagheripour E, Parvizian F, J. Mem. Sci. Res., 3, 50, 2017
  9. Egitto FD, Pure Appl. Chem., 62, 1699, 1990
  10. Inagaki N, Plasma surface modification and plasma polymerization, CRC press, Boca Raton, FL (1996).
  11. Wolf RA, Atmospheric pressure plasma for surface modification, Wiley, Hoboken, NJ (2012).
  12. Chapman BN, Glow discharge processes: Sputtering and plasma etching, Wiley-Interscience, New York (1980).
  13. Chan CM, Ko TM, Hiraoka H, Surf. Sci. Rep., 24, 1, 1996
  14. Pinnau I, Freeman BD, Advanced materials for membrane separations, American Chemical Society, Washington DC (2004).
  15. Kim SM, Surface nano-structuring of polysulfone membranes by atmospheric pressure plasma-induced graft polymerization (APPIGP), University of California, Los Angeles (2013).
  16. Farokhi B, Rezaaei M, Kiamehr Z, Hosseini SM, Int. J. Eng., 32, 354, 2019
  17. Saxena N, Prabhavathy C, De S, DasGupta S, Sep. Purif. Technol., 70(2), 160, 2009
  18. Zareei F, Hosseini SM, Sep. Purif. Technol., 226, 48, 2019
  19. Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR, Desalination, 219(1-3), 48, 2008
  20. Sadeghi I, Aroujalian A, Raisi A, Dabir B, Fathizadeh M, J. Membr. Sci., 430, 24, 2013
  21. Jashni E, Hosseini SM, Shen JN, Ionics, 26, 861, 2020