Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 98-103, 2021
Tyrosinase-mediated rapid and permanent chitosan/gelatin and chitosan/gelatin/nanohydroxyapatite hydrogel
Chitosan/gelatin and chitosan/gelatin/nanohydroxyapatite hydrogels were rapidly and stably prepared without any crosslinking materials by using an engineered tyrosinase (mTyr-CNK) with high catalytic activity for tyrosine/ DOPA-tethered polymeric biomaterials throughout a broad pH range. A dual-barrel syringe with one part containing chitosan/mTyr-CNK solution and the other containing gelatin solution with/without nanohydroxyapatite was successfully used to form homogeneous hydrogels at room temperature followed by 37 °C to simulate an in situ injection approach. The obtained hydrogels exhibited an average pore size greater than 150 μm and high swelling ratios with similar mechanical properties to other chemically crosslinked chitosan/gelatin hydrogels. The in vitro degradation properties and cellular viability suggested that the hydrogels could be used as biodegradable and biocompatible scaffolds for biomedical applications, such as space filling biomaterials and delivery vehicles for bioactive molecules and cells. These results demonstrated that mTyr-CNK-mediated hydrogels have remarkable promise as an injectable scaffold biomaterial.
[References]
  1. Fan L, Yang H, Yang J, Peng M, Hu J, Carbohydr. Polym., 146, 427, 2016
  2. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou XB, Li S, Deng Y, He NY, Bone Res., 5, 17014, 2017
  3. Patterson J, Martino MM, Hubbell JA, Mater. Today, 13, 14, 2010
  4. Li YL, Rodrigues J, Tomas H, Chem. Soc. Rev., 41, 2193, 2012
  5. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N, Carbohydr. Polym., 151, 172, 2016
  6. Zhu LD, Bratlie KM, Biochem. Eng. J., 132, 38, 2018
  7. Su K, Wang CM, Biotechnol. Lett., 37(11), 2139, 2015
  8. Yang YJ, Choi YS, Cha HJ, Biotechnol. J., 13, 180008, 2018
  9. Cui L, Jia JF, Guo Y, Liu Y, Zhu P, Carbohydr. Polym., 99, 31, 2014
  10. Saraiva SM, Miguel SP, Ribeiro MP, Coutinho P, Correia IJ, RSC Adv., 5, 63478, 2015
  11. Nieto-Suarez M, Lopez-Quintela MA, Lazzari M, Carbohydr. Polym., 141, 175, 2016
  12. Choi YR, Kim EH, Lim S, Choi YS, Biochem. Eng. J., 129, 50, 2018
  13. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ, Bioact. Mater., 3, 401, 2018
  14. Otsuka M, Biol. Pharm. Bull., 36, 1653, 2013
  15. Ohtsuki C, Kamitakahara M, Miyazaki T, J. R. Soc. Interface., 6, S349, 2009
  16. Zhou H, Lee J, Acta Biomater., 7, 2769, 2011
  17. LeGeros RZ, Clin. Mater., 14, 65, 1993
  18. Stupp SI, Ciegler GW, J. Biomed. Mater. Res., 26, 169, 1992
  19. Do H, Kang E, Yang B, Cha HJ, Choi YS, Sci. Rep., 7, 17267, 2017
  20. Hafidz RNRM, Yaakob CM, Amin I, Noorfaizan A, Int. Food Res. J., 18, 787, 2011
  21. Kim EH, Lim S, Kim TE, Jeon IO, Choi YS, Biotechnol. Bioprocess Eng., 23, 500, 2018
  22. Yan CQ, Pochan DJ, Chem. Soc. Rev., 39, 3528, 2010
  23. Guo L, Colby RH, Lusignan CP, Howe AM, Macromolecules, 36(26), 10009, 2003
  24. Yan SF, Wang TT, Li X, Jian YH, Zhang KX, Li GF, Yin JB, RSC Adv., 7, 17005, 2017
  25. Gariboldi MI, Best SM, Front Bioeng. Biotechnol., 3, 151, 2015
  26. Anseth KS, Bowman CN, Brannon-Peppas L, Biomaterials, 17, 1647, 1996
  27. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Bingheng L, Yi L, Acta Biomater., 5, 453, 2009
  28. Pei YY, Guo DM, An QD, Xiao ZY, Zhai SR, Zhai B, Korean J. Chem. Eng., 35(12), 2384, 2018
  29. Jo S, Park S, Oh Y, Hong J, Kim HJ, Kim KJ, Oh KK, Lee SH, Biotechnol. Bioprocess. Eng., 24, 145, 2019