Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 81-89, 2021
Kinetic study of activation and deactivation of adsorbed cellulase during enzymatic conversion of alkaline peroxide oxidation-pretreated corn cob to sugar
Corn cob lignocellulosic biomass is one of the useful precursors for the alternative production of fuels and chemicals. Understanding the kinetics of enzymatic conversion of corn cob through kinetic models could provide indepth knowledge and increase the predictive ability for process design and optimization. In this study, models based on the semi-mechanistic rate equations, first-order decay exponential function of time for adsorbed enzymes, structural and diffusion coefficient for adsorption were used to estimate kinetic parameters for the enzymatic conversion of alkaline peroxide oxidation (APO) pretreated corn cob to sugar. Fitting a first-order inactivation model of adsorbed cellulases to account for experimental hydrolysis data, the apparent hydrolysis rate constant (k2=29.51 min-1), the inactivation rate constant (k3=0.269min-1), and reactivation rate constant (k4=0.0048min-1) were estimated. Regressed values of apparent maximum rate, Vmax, app, for adsorbed enzymes reduced appreciably with time to more than 98% at 96 h. The diffusion limit model showed that the diffusion resistance increased with increasing enzyme concentrations.
[References]
  1. Yew GY, Lee SY, Show PL, Tao Y, Law CL, Nguyen TTC, Chang JS, Bioresour. Technol. Rep., 7, 100227, 2019
  2. Liu Y, Han W, Xu X, Chen L, Tang J, Hou P, Biochem. Eng. J., 156, 107528, 2020
  3. Takkellapati S, Li T, Gonzalez MA, Clean Technol. Environ. Policy, 20, 1615, 2018
  4. Dikshit PK, Jun HB, Kim BS, J. Chem. Eng., 37, 387, 2020
  5. Liu S, Wang Q, Cellulose Chem. Technol., 50, 803, 2016
  6. Adeleye AT, Louis H, Akakuru OU, Joseph I, Enudi OC, Michael DP, AIMS Energy, 7, 165, 2019
  7. Coelho MMH, Morais NWS, Pereira EL, Leitao RC, dos Santos AB, Biochem. Eng. J., 156, 107502, 2020
  8. Adeogun AI, Agboola BE, Idowu MA, Shittu TA, J. Bioresour. Bioprod., 4, 149, 2019
  9. Ayeni AO, Daramola MO, J. Environ. Chem. Eng., 5, 1771, 2017
  10. Ye ZL, Berson RE, Bioresour. Technol., 102(24), 11194, 2011
  11. Makarova EI, Budaeva VV, Kukhlenko AA, Orlov SE, 3 Biotech, 7, 317, 2017
  12. Carrillo F, Lis MJ, Colom X, Lopez-Mesas M, Valldeperas J, Process Biochem., 40(10), 3360, 2005
  13. Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q, Bioresour. Technol., 306, 123163, 2020
  14. Jamil NM, WIT Trans. Ecol. Environ., 186, 499, 2014
  15. Carvalho ML, Sousa R, Rodriguez-Zuniga UF, Suarez CAG, Rodrigues DS, Giordano RC, Giordano RLC, Braz. J. Chem. Eng., 30, 437, 2013
  16. Ghadge RS, Patwardhan AW, Sawant SB, Joshi JB, Chem. Eng. Sci., 60(4), 1067, 2005
  17. Converse AO, Matsuno R, Tanaka M, Taniguchi M, Biotechnol. Bioeng., 32, 38, 1988
  18. Zhang Y, Xu JL, Xu HJ, Yuan ZH, Guo Y, Bioresour. Technol., 101(21), 8261, 2010
  19. Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q, Bioresour. Technol., 285, 121355, 2019
  20. Jalak J, Valjamae P, Biotechnol. Bioeng., 106(6), 871, 2010
  21. Peri S, Karra S, Lee YY, Karim MN, Biotechnol. Prog., 23(3), 626, 2007
  22. Gan Q, Allen SJ, Taylor G, Process Biochem., 38(7), 1003, 2003
  23. Asenjo JA, Biotechnol. Bioeng., 25, 3185, 1983
  24. Hong J, Ye XH, Zhang YHP, Langmuir, 23(25), 12535, 2007
  25. Briggs GE, Haldane JB, Biochem. J., 19, 338, 1925
  26. Chrastil J, Wilson JT, Int. J. Biochem., 14, 1, 1982
  27. Chrastil J, Int. J. Biochem., 20, 683, 1988
  28. Gould JM, Biotechnol. Bioeng., 26, 46, 1984
  29. Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180, 2014
  30. Miller GL, Anal. Chem., 31, 426, 1959
  31. Ayeni AO, Omoleye JA, Hymore FK, Pandey RA, Braz. J. Chem. Eng., 33, 33, 2016
  32. Yoo CG, Lee CW, Kim TH, Biomass Bioenergy, 35, 4901, 2011
  33. Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM, Microb. Technol., 32, 35, 2003
  34. Lloyd D, J. Mol. Evolut., 45, 370, 1997
  35. Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC, BioResources, 7, 4626, 2012
  36. Berg JM, Tymoczko JL, Stryer L, Biochemistry, W. H. Freeman Publications, New York (2006).
  37. Crank J, The mathematics of diffusion, Clarendon Press, Oxford (1975).
  38. Ayeni AO, Daramola MO, Awoyomi A, Elehinafe FB, Ogunbiyi A, Sekoai PT, Folayan JA, Cogent Eng., 5, 150966, 2018
  39. Spiridon I, Teaca C, Bodirlau R, BioResources, 6, 400, 2011
  40. Gratzl JS, Papier, 46, 1, 1992
  41. Valjamae P, Sild V, Pettersson G, Johansson G, Eur. J. Biochem., 253, 469, 1998
  42. Marasovi M, Marasovi T, Milos M, J. Chem., 6560983, 1, 2017
  43. Wilkinson GN, Biochem. J., 80, 324, 1961
  44. Holtzapple MT, Caram HS, Humphrey AE, Biotechnol. Bioeng., 26, 775, 1984
  45. Matsuno R, Taniguchi M, Tanaka M, Kamikubo T, Enz. Eng., 7, 158, 1984