Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 55-63, 2021
Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous pro
In view of the importance of inert-atmosphere sludge pyrolysis for effective waste recycling and carbon emission reduction, this study probed the effects of temperature (300-700 °C) and atmosphere (100% N2, 10 CO2/90% N2, or 100% CO2) on the properties of biochar and gases obtained by sludge pyrolysis in a horizontal tube furnace. The emissions of NO, SO2, H2S, and CO increased with increasing temperature, as the inhibitory effect of CO2 on the formation of these gases (observed at <500 °C) concomitantly weakened and was superseded by the reaction of CO2 with carbon at higher temperature to afford gaseous products. The specific surface area (SBET) and pore volume of the biochar produced in the presence of CO2 increased with increasing temperature up to 500 °C, while at higher temperatures the inhibitory effect of CO2 on pore structure development resulted in a decreased SBET and an increased macropore content. These results show that pyrolysis is an effective treatment method for sludge; it can remove 48% N and 50% S in sludge and mitigate the emission of polluting gases. When CO2 participates in the pyrolysis reaction, the SBET of biochar increases significantly. In general, sludge biochar has the potential to be applied as fuel and as an adsorbent.
[References]
  1. Tian Y, Zhang J, Zuo W, Chen L, Cui YN, Tan T, Environ. Sci. Technol., 47, 3498, 2013
  2. Zandi S, Nemati B, Jahanianfard D, Davarazar M, Sheikhnejad Y, Mostafaie A, Kamali M, Aminabhavi TM, J. Environ. Manage., 247, 462, 2019
  3. Yang G, Zhang GG, Wang HC, Water Res., 78, 60, 2015
  4. Sun SJ, Zhao ZB, Li B, Ma LX, Fu DL, Sun XZ, Thape S, Shen JM, Qi H, Wu YN, Environ. Pollut., 245, 764, 2019
  5. Feng YH, Yu TC, Chen DZ, Xu GL, Wan L, Zhang Q, Hu YY, Energy Fuels, 32(1), 581, 2018
  6. Aldobouni IA, Fadhil AB, Saied IK, Energy Sources Part A-Recovery Util. Environ. Eff., 37(24), 2617, 2015
  7. Fadhil AB, Alhayali MA, Saeed LI, Fuel, 210, 165, 2017
  8. Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F, Bioresour. Technol., 272, 114, 2019
  9. Yue Y, Cui L, Lin QM, Li GT, Zhao XR, Chemosphere, 173, 551, 2017
  10. Yuan HR, Lu T, Huang HY, Zhao DD, Kobayashi N, Chen Y, J. Anal. Appl. Pyrolysis, 112, 284, 2015
  11. Udayanga WDC, Veksha A, Giannis A, Lim TT, Waste Manage., 83, 131, 2019
  12. Wang XD, Chi QQ, Liu XJ, Wang Y, Chemosphere, 216, 698, 2019
  13. He Y, Ma XQ, Bioresour. Technol., 189, 71, 2015
  14. Duan LB, Zhao CS, Zhou W, Qu CR, Chen XP, Energy Fuels, 23(7), 3826, 2009
  15. Prabowo B, Aziz M, Umeki K, Susanto H, Yan M, Yoshikawa K, Appl. Energy, 158, 97, 2015
  16. Tan ZG, Zou JH, Zhang LM, Huang QY, J. Mater. Cycles. Waste Manag., 20, 1036, 2018
  17. Zhu XF, Li K, Zhang LQ, Wu X, Zhu XF, Energy Conv. Manag., 157, 288, 2018
  18. Guizani C, Sanz FJE, Salvador S, Fuel, 116, 310, 2014
  19. Konczak M, Oleszczuk P, Rozylo K, J. CO2 Util., 29, 20, 2019
  20. Bai YH, Wang P, Yan LJ, Liu F, Xie K, J. Anal. Appl. Pyrolysis, 104, 202, 2013
  21. Gao SP, Zhao JT, Wang ZQ, Wang JF, Fang YT, Huang JJ, J. Fuel Chem. Technol., 41, 257, 2013
  22. Liu ZW, Zhang FX, Liu HL, Ba F, Yan SJ, Hu JH, Bioresour. Technol., 249, 983, 2018
  23. International A. ASTM E711-87. Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter (2004).
  24. Xu ZX, Xu L, Cheng JH, He ZX, Wang Q, Hu X, Fuel Process. Technol., 182, 37, 2018
  25. Xiong R, Dong L, Yu JA, Zhang XF, Jin L, Xu GW, Fuel Process. Technol., 91(8), 810, 2010
  26. Attar A, Fuel, 57, 201, 1978
  27. Duan YQ, Duan LB, Anthony EJ, Zhao CS, Fuel, 189, 98, 2017
  28. Guo HQ, Wang XL, Liu FR, Wang MJ, Zhang H, Hu RS, Hu YF, Fuel, 206, 716, 2017
  29. Wang HQ, Li KK, Guo ZH, Fang MX, Luo ZY, Cen KF, Carbon Resour. Convers., 1, 94, 2018
  30. Kim JH, Oh JI, Lee J, Kwon EE, Energy, 179, 163, 2019
  31. Khanmohammadi Z, Afyuni M, Mosaddeghi MR, Waste Manage. Res., 33, 275, 2015
  32. Cho DW, Kwon G, Yoon K, Tsang YF, Ok YS, Kwon EE, Song H, Energy Conv. Manag., 145, 1, 2017
  33. Song YH, Ma QN, He WJ, Energy Fuels, 31(1), 217, 2017
  34. Wang L, Sandquist J, Varhegyi G, Guell BM, Energy Fuels, 27(10), 6098, 2013
  35. Wen R, Yuan B, Wang Y, Cao WM, Liu Y, Jia Y, Liu Q, Environ. Sci. Pollut. Res., 25, 5105, 2018
  36. Liu Y, Ran CM, Siyal AA, Song YM, Jiang ZH, Dai JJ, et al., J. Hazard. Mater., 396, 122619, 2020
  37. He XY, Liu ZX, Niu WJ, Yang L, Zhou T, Qin D, Niu ZY, Yuan QX, Energy, 143, 746, 2018
  38. Chen T, Zhang YX, Wang HT, Lu WJ, Zhou ZY, Zhang YC, Ren LL, Bioresour. Technol., 164, 47, 2014
  39. Sannigrahi P, Ragauskas AJ, Tuskan GA, Biofuel. Bioprod. Biorefin., 4, 209, 2010
  40. Sanchez ME, Menendez JA, Dominguez A, Pis JJ, Martinez O, Calvo LF, Biomass Bioenergy, 33, 933, 2009
  41. Liu ZG, Han GH, Fuel, 158, 159, 2015
  42. Wang ZH, MA XQ, Yao ZL, Yu QH, Wang Z, Lin YS, Appl. Therm. Eng., 128, 662, 2018
  43. Udayanga WDC, Veksha A, Giannis A, Lisak G, Lim TT, Energy Conv. Manag., 196, 1410, 2019
  44. Zielinska A, Oleszczuk , Charmas B, Zieba JS, Patkowska SP, J. Anal. Appl. Pyrolysis, 112, 201, 2015
  45. Pallares J, Cencerrado AG, Arauzo I, Biomass Bioenergy, 115, 64, 2018
  46. Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S, J. Environ. Manage., 146, 189, 2014
  47. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Pure. Appl. Chem., 57, 603, 1985
  48. Downie A, et al., Physical properties of biochar, Earthscan, London (2009).
  49. Jindarom C, Meeyoo V, Kitiyanan B, Rirksomboon T, Rangsunvigit P, J. Chem. Eng., 133, 239, 2007
  50. Miliotti E, Casini D, Rosi L, Lotti G, Rizzo AM, Chiaramonti D, Biomass Bioenergy, 139, 105593, 2020