Issue
Korean Journal of Chemical Engineering,
Vol.38, No.1, 22-31, 2021
Ampicillin adsorption onto amine-functionalized magnetic graphene oxide: synthesis, characterization and removal mechanism
There are various chemical, physical and biological methods that have been applied to remove antibiotic residuals from aqueous environment. We investigated the removal of ampicillin (AMP) by a novel nanometer-size Fe3O4/graphene oxide/aminopropyltrimethoxysilane (FGOA). Based on the sol-gel method, the graphene oxide (GO) was first modified by aminopropyltrimethoxysilane (APTMS) to form GOA material containing both acidic and basic surface functional groups. The nanomagnetic iron oxide was then decorated to the GOA surface at various weight ratios by ultra-sonication in ethanol, resulting in different FGOA samples. The as-synthesized FGOA had single-layer structure and parallel array-like well-distributed Fe3O4. In laboratory-scale, the AMP treatment efficiency by FGOA with the ratio of Fe3O4 :GOA as 1 : 5 ratio reached the highest value around 94% within 100 min and only lost 1% after five regeneration cycles. The maximum adsorption capacity of FGOA was 294mg g-1, significantly much higher than the previously published materials applied to AMP uptake. Interestingly, the optimum pH of FGOA ranged extensively from 4 to 9, revealing high application potential to real wastewater without any pH adjustment. The reasonable mechanism might be mainly attributed to electrostatic attraction, hydrophilic, and π-π interaction.
[References]
  1. Anthony A, Adekunle F, Thor S, Phys. Chem. Earth, 105, 177, 2018
  2. Peters L, Olson L, Khu DT, Linnros S, Le NK, Hanberger H, Hoang NT, Tran DM, Larsson M, PloS One, 14, 5, 2019
  3. Seo J, Park SY, Kim HH, Lee C, Advanced Technologies and Best Practices for Environmental Sustainability, Springer, 91 (2020).
  4. Adhikari S, Kim DH, Korean J. Chem. Eng., 36(3), 468, 2019
  5. Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474, 2018
  6. Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 35(2), 567, 2018
  7. Ellis AG, Bloomberg GR, Ann. Allergy Asthma Immunol., 122, 422, 2019
  8. Dahl C, Stigum H, Valeur J, Iszatt N, Lenters V, Peddada S, Bjørnholt JV, Midtvedt T, Mandal S, Eggesbø M, Int. J. Epidemiol., 47, 1658, 2018
  9. Fox-Lewis A, Takata J, Miliya T, Lubell Y, Soeng S, Sar P, Rith K, McKellar G, Wuthiekanun V, McGonagle E, Emerg. Infect. Dis., 24, 841, 2018
  10. Nairi V, Medda L, Monduzzi M, Salis A, J. Colloid Interface Sci., 497, 217, 2007
  11. Elmolla ES, Chaudhuri M, J. Hazard. Mater., 173(1-3), 445, 2010
  12. Elmolla ES, Chaudhuri M, Desalination, 252(1-3), 46, 2010
  13. Rahardjo AK, Susanto MJJ, Kurniawan A, Indraswati N, Ismadji S, J. Hazard. Mater., 190(1-3), 1001, 2011
  14. Weng X, Cai W, Lan R, Sun Q, Chen Z, Environ. Pollut., 236, 562, 2018
  15. Chia RYH, Removal of ampicillin and ciprofloxacin by GAC adsorption, Nanyang Technological University Publication, Singapore (2018).
  16. Priya B, Raizada P, Singh N, Thakur P, Singh P, J. Colloid Interface Sci., 479, 271, 2016
  17. Minh TD, Lee BK, J. Mater. Cycles Waste Manag., 19, 1022, 2017
  18. Minh TD, Lee BK, Environ. Sci. Pollut. Res., 25, 21901, 2018
  19. Minh TD, Lee BK, Linh PH, Res. Chem. Intermed., 44, 6515, 2018
  20. Aliofkhazraei M, et al., Graphene science handbook: Electrical and optical properties, Routledge & CRC Press Publications, United Kingdom (2016).
  21. Duman O, Tunc S, Bozoglan BK, Polat TG, J. Alloy. Compd., 687, 370, 2016
  22. Duman O, Tunc S, Polat TG, Bozogan BK, Carbohydr. Polym., 147, 79, 2016
  23. Duman O, Ozcan C, Polat TG, Tunc S, Environ. Pollut., 244, 723, 2019
  24. Maan KS, et al., New dimensions in production and utilization of hydrogen, Elsevier Publications, Netherlands, 321 (2020).
  25. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440, 2018
  26. Oh WC, Cho KY, Jung CH, Areerob Y, Sci. Rep., 10, 1, 2020
  27. Fagiolari L, Bella F, Energy Environ. Sci., 12, 3437, 2019
  28. Rakspun J, Chiang YJ, Chen JY, Yeh CY, Amornkitbamrung V, Chanlek N, Vailikhit V, Hasin P, Sol. Energy, 203, 175, 2020
  29. Perreault LL, Colo F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Vitale-Brovarone C, Florek J, Kleitz F, Adv. Energy Mater., 8, 180243, 2018
  30. Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Carbon, 107, 811, 2016
  31. Minh TD, Lee BK, Nguyen-Le MT, J. Environ. Manage., 209, 452, 2018
  32. Nguyen-Le MT, Lee BK, Tran DM, J. Ind. Eng. Chem., 56, 225, 2017
  33. Hanh NT, Tri NLM, Van Thuan D, Tung MHT, et al.,, J. Photochem. Photobiol. A-Chem., 382, 111923, 2019
  34. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806, 2010
  35. Guan H, Wang J, Tan S, Han Q, Liang Q, Ding M, Korean J. Chem. Eng., 37(6), 1097, 2020
  36. Kalantari M, Kazemeini M, Arpanaei A, Mater. Res. Bull., 48(6), 2023, 2013
  37. Ha HT, Huong NT, Minh TD, Lee BK, Rene ER, Bao TV, et al., J. Environ. Chem. Eng., 146, 042006, 2020
  38. Ha HT, Huong NT, Lee BK, Duc DS, Trung VB, et al.,, Res. Chem. Intermed., 46, 5023, 2020
  39. Duman O, Tunc S, Polat TG, Microporous Mesoporous Mater., 210, 176, 2015
  40. Duman O, Tunc S, Polat TG, Appl. Clay Sci., 109, 22, 2015
  41. Carabineiro S, Thavorn-Amornsri T, Pereira M, Figueiredo J, Water Res., 45, 4583, 2011
  42. Carabineiro SAC, Thavorn-amornsri T, Pereira MFR, Serp P, Figueiredo JL, Catal. Today, 186(1), 29, 2012
  43. Wang GP, Wu T, Li YJ, Sun DJ, Wang Y, Huang XH, Zhang GC, Liu RH, J. Chem. Technol. Biotechnol., 87(5), 623, 2012
  44. Balarak D, Mostafapour FK, Azarpira H, Joghataei A, J. Pharm. Res. Int., 20, 1, 2017
  45. Wu Y, Liu W, Wang Y, Hu X, He Z, Chen X, Zhao Y, Int. J. Environ. Res. Public Health, 15, 2652, 2018
  46. Ayranci E, Duman O, Chem. Eng. J., 156(1), 70, 2010
  47. Duman O, Ayranci E, J. Hazard. Mater., 174(1-3), 359, 2010
  48. Ghaedi M, Tashkhourian J, Pebdani AA, Sadeghian B, Ana FN, Korean J. Chem. Eng., 28(12), 2255, 2011