Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2143-2151, 2020
Synthesis of high-performance Ni/Ce0.8Zr0.2O2 catalyst via co-nanocasting method for ethanol dry reforming
A Ni/Ce0.8Zr0.2O2 catalyst (NiCeZr-N) was synthesized by a facile co-nanocasting technique for syngas production from ethanol dry reforming. In addition, a series of characterization techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), inductive coupled plasma Emission Spectrometer (ICP), X-ray photoelectron spectroscopy (XPS), Raman and hydrogen temperature programmed reduction (H2-TPR) were selected to evaluate the physicochemical features of the as-prepared catalysts. Indeed, the results indicated that NiCeZr-N catalyst prepared by co-nanocasting method had a smaller particle size (<5 nm), relatively higher specific surface area (39m2/g) and stronger metal-support interaction in comparison with another model catalyst obtained from conventional co-precipitation method (NiCeZr-P). Expectedly, these positive factors enabled NiCeZr-N catalyst to exhibit better activity and stability. Typically, ethanol is completely converted by using NiCeZr-N as catalyst and heating to 700 °C, and CO2 conversion was as high as 65.3%. Interestingly, H2/CO was close to 1.1 at 650 °C, which could be used as feedstocks of Fischer-Tropsch process. Particularly, no obvious fluctuation of ethanol conversion and the product selectivity was observed during 40 h time-on-stream stability test.
[References]
  1. Bac S, Keskin S, Avci AK, Sust. Energy Fuels, 4, 1029, 2020
  2. Fayaz F, Bach LG, Bahari MB, Nguyen TD, Vu KB, Kanthasamy R, Samart C, Nguyen-Huy C, Vo DN, Int. J. Energy Res., 43, 405, 2018
  3. Kumar S, Mondal MK, Korean J. Chem. Eng., 37(2), 231, 2020
  4. Yu J, Odriozola JA, Reina TR, Catalysts, 9, 1015, 2019
  5. Ortiz AL, Samano RBP, Zaragoza MJM, Collins-Martinez V, Int. J. Hydrog. Energy, 40(48), 17172, 2015
  6. Zawadzki A, Bellido JDA, Lucredio AF, Assaf EM, Fuel Process. Technol., 128, 432, 2014
  7. Dang C, Wu S, Yang G, Cao Y, Wang H, Peng F, Yu H, J. Energy Chem., 43, 90, 2020
  8. Zhao S, Cai W, Li Y, Yu H, Zhang S, Cui L, J. Saudi Chem. Soc., 22, 58, 2018
  9. Drif A, Bion N, Brahmi R, Ojala S, Pirault-Roy L, Turpeinen E, Seelam PK, Keiski RL, Epron F, Appl. Catal. A: Gen., 504, 576, 2015
  10. le Sache E, Pastor-Perez L, Watson D, Sepulveda-Escribano A, Reina TR, Appl. Catal. B: Environ., 236, 458, 2018
  11. Jo S, Kim Y, Korean J. Chem. Eng., 11, 3203, 2016
  12. Bahari MB, Fayaz F, Ainirazali N, Phuc NHH, Vo DVN, Arpn J. Eng. Appl. Sci., 11, 7249, 2016
  13. Samsudeen K, Ahmed AF, Yahya M, Ahmed A, Anis F, Int. J. Res. Sci., 4, 5, 2018
  14. Zhang Q, Wang Z, Ning P, Zhang T, Wang M, Long K, Huang J, Korean J. Chem. Eng., 34(11), 2823, 2017
  15. Daoura O, Kaydouh MN, Ei-Hassan N, Massiani P, Launay F, Boutros M, J. CO2 Util., 24, 112, 2018
  16. Li HT, Qiu Y, Wang CZ, Huang X, Xiao TC, Zhao YX, Catal. Today, 317, 76, 2018
  17. Bej B, Bepari S, Pradhan NC, Neogi S, Catal. Today, 291, 58, 2017
  18. Li Z, Wamg Z, Jiang B, Kawi S, Catal. Sci. Technol., 8, 3363, 2018
  19. Wei YC, Cai WJ, Deng SJ, Li ZC, Yu H, Zhang SY, Yu ZH, Cui L, Qu FZ, Renew. Energy, 145, 1507, 2020
  20. Delahaye E, Escax V, El Hassan N, Davidson A, Aquino R, Dupuis V, Perzynski R, Raikher YL, J. Phys. Chem. B, 110(51), 26001, 2006
  21. Tang WX, Wu XF, Li SD, Shan X, Liu G, Chen YF, Appl. Catal. B: Environ., 162, 110, 2015
  22. Nair MM, Kaliagunine S, Kleitz F, ACS Catal., 4, 3837, 2014
  23. Huang B, Bartholomew CH, Woodfield BF, Microporous Mesoporous Mater., 183, 37, 2014
  24. Duan Q, Wang J, Ding C, Ding H, Guo S, Jia Y, Liu P, Zhang K, Fuel, 18, 112, 2017
  25. Valdes-Solis T, Marban G, Fuertes AB, Catal. Today, 116(3), 354, 2006
  26. de Sousa FF, de Sousa HSA, Oliveira AC, Junior MCC, Ayala AP, Barros EB, Viana BC, Filho JM, Oliveira AC, Int. J. Hydrog. Energy, 37(4), 3201, 2012
  27. Xu Tongkuan, Zou Jie, Tao Weitong, Zhang Shaoyin, Cui Li, Zeng Fanli, Wang Dazhi, Cai Weijie, Fuel, 183, 238, 2016
  28. Deshpande AS, Niederberger M, Microporous Mesoporous Mater., 101, 413, 2007
  29. Bulutoglu PS, Say Z, Bac S, Ozensoy E, Avci AK, Appl. Catal. A: Gen., 564, 157, 2018
  30. Guerrero-Caballero J, Kane T, Haidar N, Jalowiecki-Duhamel L, Lofberg A, Catal. Today, 333, 251, 2019
  31. Basile F, Mafessanti R, Fasolini A, Fornasari G, Lombardi E, Vaccari A, J. European Ceram. Soc., 39, 41, 2019
  32. Culity BD, Elements of X-ray diffraction, Addison-Wesley Metallurgy Series, Boston (1978).
  33. Mcbride JR, Hass KC, Poindexter BD, Weber WH, J. Appl. Phys., 76, 2435, 1994
  34. Wang Y, Yao L, Wang Y, Wang S, Zhao Q, Mao D, Hu C, ACS Catal., 8, 6495, 2018
  35. Xu H, Sun M, Liu S, Li Y, Wang J, Chen Y, Rsc. Adv., 7, 24117, 2017
  36. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G, Surf. Interface Anal., 40, 264, 2008
  37. Horvath A, Cai W, Homs N, Piscina PR, Appl. Catal. B: Environ., 150-151, 47, 2014
  38. Cai M, Wen J, Chu W, Cheng X, Li Z, J. Natural Gas Chem., 20, 318, 2011
  39. Anita H, Stefler G, Geszti O, Alain K, Agnieszka P, Laszlo G, Catal. Today, 169(1), 102, 2011
  40. Zonetti PC, Letichevsky S, Gaspar AB, Sousa-Aguiar EF, Appel LG, Appl. Catal. A: Gen., 475, 48, 2014
  41. Gao X, Liu G, Wei Q, Yang G, Masaki M, Peng X, Yang R, Tsubaki N, Int. J. Hydrog. Energy, 42, 26, 2017
  42. Wu YL, Zhao WJ, Li XH, Li WY, J. Fuel Chem. Technol., 5, 189, 2017
  43. Pawar V, Ray D, Subrahmanyam C, Janardhanan VM, Energy Fuels, 29(12), 8047, 2015
  44. Pimenta MA, Dresselhaus G, Dresslhaus MS, Cancado LG, Jorio A, Saito R, Phys. Chem. Chem. Phys., 9, 1276, 2007
  45. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL, Small, 6, 195, 2010