Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2124-2135, 2020
A multiscale study on the effects of dynamic capillary pressure in two-phase flow in porous media
Capillary pressure is usually considered as a function of the rock and fluid properties, and saturation. However, recent studies have shown that capillary forces also are a function of the rate of change of saturation. Moreover, although it was observed that dynamic forces are highly scale dependent, the role of these effects in large-scale flow practices is still unclear. In this study, using an innovative numerical simulation approach, the impact of the mentioned parameters was studied in a highly heterogeneous oil reservoir that is under waterflooding process. It is observed that the role of dynamic capillary pressure, using routinely measured dynamic capillary coefficient values, is not important in large-scale problems. However, it would be important in the higher capillary coefficient values that are several orders of magnitude larger than the values reported in previous experimental studies. Furthermore, the role of rock heterogeneity is discussed and it is shown that neglecting the dynamic capillary effects in heterogeneous media may lead to misleading results in the prediction of the injection front behavior in the reservoir. The dynamic capillary effects, by lowering the imbibition capillary pressure in the front, leads to more frontal movement of the injection fluid. Also, it is shown that the dynamic effects are more sensible at points close to the injection wells in homogenous reservoirs, but, in the heterogenous models it is more dependent on rock properties than the distance from the injection wells.
[References]
  1. Rahman MK, Chen ZX, Rahman SS, J. Energy Resour. Technol.-Trans. ASME, 125(3), 169, 2003
  2. Bear J, Modeling phenomena of flow and transport in porous media, Vol. 31, Springer, New York (2018).
  3. Abbasi J, Riazi M, Ghaedi M, Mirzaei-Paiaman A, J. Pet. Sci. Eng., 150, 108, 2017
  4. John RF, Principles of applied reservoir simulation, Elsevier, Netherland (2001).
  5. Fan Z, Yang D, Chai D, Li X, J. Energy Resour. Technol., 141, 2, 2018
  6. Zhang M, Ayala LF, J. Energy Resour. Technol., 142, 4, 2019
  7. Das DB, Hassanizadeh SM, Upscaling multiphase flow in porous media, Springer, Berlin (2005).
  8. Bottero S, Experimental study of dynamic capillary pressure effect in two-phase flow in porous media, Copenhagen, Denmark (2006).
  9. Das DB, Mirzaei M, AIChE J., 58(12), 3891, 2012
  10. Mirzaei M, Das DB, Chem. Eng. Sci., 62(7), 1927, 2007
  11. Juanes R, Adv. Water Resour., 31, 661, 2008
  12. Barenblatt GI, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 5, 144 (1971).
  13. Shi Y, Yang D, J. Energy Resour. Technol., 139, 062902, 2017
  14. Manthey S, Hassanizadeh SM, Helmig R, Upscaling multiph. Flow porous media from pore to core beyond, Springer, Berlin (2005).
  15. Hassanizadeh SM, Celia MA, Dahle HK, Vadose Zo. J., 1, 38, 2002
  16. DiCarlo DA, Mirzaei M, Jessen K, SPE J., 16, 812, 2011
  17. Abidoye LK, Das DB, Adv. Water Resour., 74, 212, 2014
  18. Stauffer F, IAHR symposium on scale effects in porous media, Thessaloniki, Greece, 29, 3-35 (1978).
  19. Blunt MJ, Multiphase flow in permeable media, Cambridge University Press, London (2017).
  20. Hanspal NS, Das DB, AIChE J., 58(6), 1951, 2012
  21. Joekar-Niasar V, Hassanizadeh SM, Int. J. Multiph. Flow, 37(2), 198, 2011
  22. Amaziane B, Milisic JP, Panfilov M, Pankratov L, Phys. Rev. E, 31, 9, 2012
  23. Abbasi J, Ghaedi M, Riazi M, Saint Petersburg 2018: Innovations in Geosciences, Saint Petersburg (2018).
  24. Bottero S, Hassanizadeh SM, Pyrak-Nolte LJ, AGU Fall Meeting Abstracts, Alberta (2009).
  25. Tian L, Feng B, Zheng S, Gu D, Ren X, Yang D, J. Energy Resour. Technol., 141, 2, 2018
  26. Mohammad RS, Tareen MYK, Mengel A, Shah SAR, Iqbal J, J. Pet. Explor. Prod. Technol., 10, 1891, 2020
  27. Li Y, Liu C, Li H, Chen S, Huang S, J. Hydrol., 584, 124709, 2020
  28. Lie KA, Reservoir Simulation Toolbox (MRST), Cambridge University Press, 2019, London (2015).
  29. Nilsen HM, Lie KA, Andersen O, Comput. Geosci., 20, 49, 2016
  30. Abbasi J, Ghaedi M, Riazi M, J. Pet. Sci. Eng., 162, 44, 2018
  31. Lie KA, Krogstad S, Ligaarden IS, Natvig JR, Nilsen HM, Skaflestad B, Comput. Geosci., 16, 297, 2012
  32. Gambolati G, Pini G, Int. J. Numer. Methods Fluids, 29, 343, 1999
  33. Das DB, Thirakulchaya T, Deka L, Hanspal NS, Environ. Prog., 2, 1, 2015
  34. Christie MA, Blunt MJ, SPE Reserv. Eval. Eng., 4, 308, 2001
  35. Debbabi Y, Jackson MD, Hampson GJ, Salinas P, Transp. Porous Media, 120(1), 183, 2017
  36. Debbabi Y, Jackson MD, Hampson GJ, Fitch PJR, Salinas P, Transp. Porous Media, 117(2), 281, 2017
  37. Chatzis I, Morrow NR, Soc. Pet. Eng. J., 24, 555, 1984
  38. Li Y, Li H, Chen S, Lu Y, Li X, Luo H, Liu C, Cui X, Int. Pet. Technol. Conf., IPTC 2019, Beijing (2019).
  39. Hou TY, Int. J. Numer. Methods Fluids, 47, 707, 2005
  40. Dahle HK, et al., Upscaling multiph. Flow porous media from pore to core beyond, Springer, Berlin, Germany (2005).