Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 2068-2074, 2020
Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene
A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl3) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N2 adsorption/desorption measurements at -196 °C were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 °C), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 °C (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767m2/g) exhibited excellent methane (CH4) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm3/g was obtained from CH4 adsorption isotherm at 25 °C and 35 bar. Note that the adsorption performance of the CH4 is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl3 activation under N2 environment.
[References]
  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666, 2004
  2. Sang M, Shin J, Kim K, Yu KJ, Nanomaterials, 9, 374, 2019
  3. Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, Korean J. Chem. Eng., 34(3), 876, 2017
  4. Chowdhury Shamik, Balasubramanian Rajasekhar, Ind. Eng. Chem. Res., 55(29), 7906, 2016
  5. Bhuyan SA, Uddin N, Islam M, Bipasha FA, Int. Nano Lett., 6, 63, 2016
  6. Gadipelli S, Guo ZX, Prog. Mater. Sci., 69, 1, 2015
  7. Purkait T, Singh G, Singh M, Kumar D, Dey RS, Sci. Rep., 7, 1, 2017
  8. Berg JM, Tymoczko JL, Stryer L, Biochemistry 5th Ed. W.H. Freeman and Company, New York (2002).
  9. Hongo T, Sugiyama J, Yamazaki A, Yamasaki A, Ind. Eng. Chem. Res., 52(5), 2111, 2013
  10. Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y, RSC Adv., 2, 7727, 2012
  11. Prahas D, Kartika Y, Indraswati N, Ismadji S, Chem. Eng. J., 140(1-3), 32, 2008
  12. Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C, Chem. Eng. Res. Des., 89(3A), 335, 2011
  13. Jiang ZX, Liu Y, Sun XP, Tian FP, Sun FX, Liang CH, You WS, Han CR, Li C, Langmuir, 19(3), 731, 2003
  14. Vargas DP, Giraldo L, Moreno-Pirajan JC, Adsorption, 22, 717, 2016
  15. Rufford TE, Hullicova-Jurcakova D, Zhu Z, Lu GQ, J. Mater. Res., 25, 1451, 2011
  16. Sahira J, Mandira A, Prasad PB, Ram PR, Res. J. Chem. Sci., 3, 19, 2013
  17. Xu Z, Yuan Z, Zhang D, Chen W, Huang Y, Zhang T, Tian D, Deng H, Zhou Y, Sun Z, J. Clean Prod., 192, 453, 2018
  18. Singh P, Bahadur J, Pal K, Graphene, 6, 61, 2017
  19. Li XH, Kurasch S, Kaiser U, Antonietti M, Angew. Chem.-Int. Edit., 51, 9689, 2012
  20. Danish M, Hashim R, Ibrahim MNM, Sulaiman O, J. Anal. Appl. Pyrolysis, 104, 418, 2013
  21. Zhang B, Song J, Yang G, Han B, Chem. Sci., 5, 4656, 2014
  22. Jagiello J, Thommes M, Carbon, 42, 1227, 2004
  23. Indayaningsih N, Destyorini F, Purawiardi RI, Insiyanda DR, Widodo H, IOP Conf. Ser.: J. Phys. Conf. Ser., 817, 1, 2016
  24. Song C, Wang T, Qiu JS, Cao YM, Cai T, J. Porous Mat., 15, 1, 2008
  25. Amieva EJ, et al., Graphene-based materials functionalization with natural polymeric biomolecules, INTECH Open Access, United Kingdom (2016).
  26. Groen JC, Peffer LAA, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1, 2003
  27. Wang S, Feng QH, Zha M, Javadpour F, Hu QH, Energy Fuels, 32(1), 169, 2018
  28. Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 1, 2012
  29. Biru EI, Iovu H, Graphene nanocomposites studied by Raman spectroscopy, INTECH Open Access, United Kingdom (2018).
  30. Wu JB, Lin ML, Cong X, Liu HN, Tan PH, Chem. Soc. Rev., 47, 1822, 2018
  31. Khan QA, Shaur A, Khan TA, Joya YF, Awan MS, Cogent Chem., 3, 1, 2017
  32. Himeno S, Komatsu T, Fujita S, J. Chem. Eng. Data, 50(2), 369, 2005