Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 2041-2053, 2020
A novel CFD simulation of H2 separation by Pd-based helical and straight membrane tubes
A novel three-dimensional CFD simulation of H2 gas permeation through dense palladium (Pd) membrane was developed. Due to discontinuity of flow in a membrane, usually, gas diffusion process is simulated by introducing source and sink terms. In a novel approach, an analogy between heat and mass transfer is considered. The most important advantage of this approach is that there is no need to define sink and source terms, and the membrane thickness is considered as a solution domain without separating the geometry adjacent to the membrane. Also, it allows the modeling of multilayer membranes with different mechanisms of diffusion, separately. The effect of membrane geometry on the hydrogen separation was investigated using the straight and helical modules by defining user-defined function (UDF) and user-defined scalars (UDS). The results showed an average flux and H2 recovery enhancement of 20% and 13% for helical configuration, respectively. The influence of the feed gas and sweep gas flow rates, helix pitch, coil diameter, pressure difference, and module temperature on hydrogen separation was also investigated. The proposed simulation model was validated using the experimental data. The results indicated that this method has a maximum error of about 10% for H2 flux.
[References]
  1. Lee DH, Lee DJ, Int. J. Hydrog. Energy, 33, 1618, 2008
  2. Rosen MA, J. Power Energy Eng., 3, 373, 2015
  3. Winter CJ, Int. J. Hydrog. Energy, 34, 3, 2009
  4. Gupta RB, Hydrogen fuel: production, transport, and storage, CRC Press, Boca Raton, Florida (2008).
  5. Momirlan M, Veziroglu T, Renew. Sust. Energ. Rev., 6, 179, 2002
  6. Tabrizi FF, Mousavi SAHS, Atashi H, Energy Conv. Manag., 103, 1077, 2015
  7. Choudhary TV, Santra AK, Sivadinarayana C, Min BK, Yi CW, Davis K, Goodman DW, Catal. Lett., 77(1-3), 1, 2001
  8. Sørensen RZ, Nielsen LJE, Jensen S, Hansen O, Johannessen T, Quaade U, Christensen CH, Catal. Commun., 6, 232, 2005
  9. Choudhary TV, Sivadinarayana C, Goodman DW, Catal. Lett., 72, 201, 2001
  10. Murugan A, Brown AS, Int. J. Hydrog. Energy, 40, 4233, 2015
  11. Sjardin M, Damen KJ, Faaij APC, Energy, 31, 2555, 2006
  12. Peramanu S, Cox BG, Pruden BB, Int. J. Hydrog. Energy, 24, 424, 1999
  13. Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC, Int. J. Hydrog. Energy, 37, 12679, 2012
  14. Barison S, Fasolin S, Boldrini S, Ferrario A, Romano M, Montagner F, Deambrosis SM, Fabrizio M, Armelao L, Int. J. Hydrog. Energy, 43, 7989, 2018
  15. Al-Mufachi NA, Rees NV, Steinberger-Wilkens R, Renew. Sust. Energ. Rev., 47, 551, 2015
  16. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S, Chem. Eng. Process. Intensif., 121, 49, 2017
  17. Voncken RJW, Roghair I, van Sint Annaland M, Chem. Eng. Sci., 205, 318, 2019
  18. Ghasemzadeh K, Harasi NJ, Iulianelli A, Basile A, Int. J. Hydrog. Energy, 45, 7354, 2019
  19. Yang X, Wang S, Hu B, Zhang K, He Y, J. Membr. Sci., 581, 269, 2019
  20. Vlaev SD, Dzhonova-Atanasova D, Tsibranska I, Chem. Eng. Process. Intensif., 147, 107738, 2020
  21. Xie F, Liu J, Wang J, Chen W, Korean J. Chem. Eng., 33, 2178, 2016
  22. Haddadi B, Jordan C, Miltner M, Harasek M, J. Membr. Sci., 563, 209, 2018
  23. Ghasemzadeh K, Zeynali R, Bahadori F, Basile A, Int. J. Hydrog. Energy, 43, 7683, 2018
  24. Marriott J, Sørensen E, Chem. Eng. Sci., 58, 4990, 2003
  25. Li X, Liu Y, Jiang H, Chen R, Ind. Eng. Chem. Res., 58, 1094, 2018
  26. Miramini SA, Razavi SMR, Ghadiri M, Mahdavi SZ, Moradi S, Chem. Eng. Process. Intensif., 72, 136, 2013
  27. shin DY, Hwang KR, Park JS, Park MJ, Korean J. Chem. Eng., 32, 1421, 2015
  28. Ji G, Wang G, Hooman K, Bhatia S, da Costa JCD, Chem. Sci. Eng., 6, 12, 2012
  29. Wu SE, Lin YC, Hwang KJ, Cheng TW, Tung KL, Chem. Eng. Process. Intensif., 125, 96, 2018
  30. Lee G, Hwang KR, Park JS, Park MJ, Korean J. Chem. Eng., 34, 2373, 2017
  31. Takaba H, Nakao SIJ, J. Membr. Sci., 249, 88, 2005
  32. Abdel-Jawad MM, Gopalakrishnan S, Duke MC, Macrossan NM, Schneider PS, Diniz da Costa JS, J. Membr. Sci., 299, 235, 2007
  33. Coroneo M, Montante G, Baschetti MG, Paglianti A, Chem. Eng. Sci., 64, 1094, 2009
  34. Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC, Int. J. Hydrog. Energy, 38, 1156, 2013
  35. Ben-Mansour R, Li H, Habib MA, Energy, 144, 626, 2018
  36. Ghohe FM, Hormozi F, Int. J. Hydrog. Energy, 44, 10665, 2019
  37. Cengel YA, Ghajar AJ, Heat and mass transfer, McGraw-Hill Educ., New York (2011).
  38. Kluiters SC, Energy Cent. Netherlands, Petten, Netherlands (2004).
  39. Ward TL, Dao T, J. Membr. Sci., 153, 231, 1999
  40. Wang WP, Thomas S, Zhang XL, Pan XL, Yang WS, Xiong GX, Sep. Purif. Technol., 52, 185, 2006