Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1951-1962, 2020
Microwave-synthesized high-performance mesoporous SBA-15 silica materials for CO2 capture
Microwave-assisted post-synthetic detemplating method was applied to remove successfully the occluded organic template from the mesoporous silica frameworks of as-synthesized SBA-15 within a short period of time compared to a conventional method, such as furnace calcination. The nitrogen adsorption/desorption isotherm studies showed that the resultant detemplated SBA-15 had a very high specific surface area of 1,271m2/g, large pore size of 9.21 nm and high pore volume of 2.10 cm3/g; while the powder X-ray diffraction patterns and high-resolution TEM images of these support materials revealed the presence of highly ordered mesopores without any structural shrinkage. Both the microwave power and time during post-synthetic microwave irradiation were found to influence the morphological structure of the SBA-15 support. To evaluate the adsorption performance of the microwave-irradiated SBA-15 support, CO2 adsorption uptake was measured after functionalizing it with different loadings of polyethyleneimine (PEI) under 9.7% CO2/N2 mixture at 75 °C. The maximum CO2 uptake was 3.63mmol CO2/g (0.16 g/g), with an optimum PEI loading of 70 wt%. Because of the significant improvement in structural characteristics, the microwave-irradiated SBA-15 supports facilitated more PEI incorporation that contributed to about 15% higher CO2 uptake than that of conventional furnace calcined one. In addition, the sorbent demonstrated very good cyclic stability when tested over 25 cycles and for a total duration of 20 h in humid conditions.
[References]
  1. Cubasch U, et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).
  2. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467, 2002
  3. Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073, 2003
  4. Le MUT, Lee SY, Park SJ, Int. J. Hydrog. Energy, 39(23), 12340, 2014
  5. Choe Y, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(3), 962, 2010
  6. Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241, 2010
  7. Sharma P, Baek IH, Park YW, Nam SC, Park JH, Park SD, Park SY, Korean J. Chem. Eng., 29(2), 249, 2012
  8. Zhao A, Samanta A, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 52(19), 6480, 2013
  9. Dey R, Gupta R, Samanta A, Sep. Sci. Technol., 53(16), 2683, 2018
  10. Sanz-Perez ES, Olivares-Marin M, Arencibia A, Sanz R, Calleja G, Maroto-Valer MM, Int. J Greenh. Gas Con., 17, 366, 2013
  11. Liu ZY, Pudasainee D, Liu QX, Gupta R, Sep. Purif. Technol., 156, 259, 2015
  12. Kishor R, Ghoshal AK, Chem. Eng. J., 300, 236, 2016
  13. Zhu T, Yang S, Choi DK, Row KH, Korean J. Chem. Eng., 27(6), 1910, 2010
  14. Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A, Korean J. Chem. Eng., 29(1), 89, 2012
  15. Chen C, Kim J, Ahn WS, Korean J. Chem. Eng., 31(11), 1919, 2014
  16. Manianglung C, Pacia RM, Ko YS, Korean J. Chem. Eng., 36(8), 1267, 2019
  17. Son WJ, Choi JS, Ahn WS, Microporous Mesoporous Mater., 113, 31, 2008
  18. Chen C, Yang ST, Ahn WS, Ryoo R, Chem. Commun., 24, 3627, 2009
  19. Chen C, You KS, Ahn JW, Ahn WS, Korean J. Chem. Eng., 27(3), 1010, 2010
  20. Nakanishi T, Ohkubo K, Kojima T, Fukuzumi S, J. Am. Chem. Soc., 131(2), 577, 2009
  21. Olea A, Sanz-Perez ES, Arencibia A, Sanz R, Calleja G, Adsorption, 19, 2, 2013
  22. Bae YK, Han OH, Microporous Mesoporous Mater., 106, 304, 2007
  23. Silva LCC, Reis TVS, Cosentino IC, Fantini MCA, Matos JR, Bruns RE, Microporous Mesoporous Mater., 133, 1, 2010
  24. Kleitz F, Schmidt W, Schuth F, Microporous Mesoporous Mater., 65, 1, 2003
  25. Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D, Chem. Commun., 11, 1186, 2002
  26. Lai TL, Shu YY, Lin YC, Chen WN, Wang CB, Mater. Lett., 63, 1693, 2009
  27. Avila SGD, Silva LCC, Matos JR, Microporous Mesoporous Mater., 234, 277, 2016
  28. Yuan MH, Wang LF, Yang RT, Langmuir, 30(27), 8124, 2014
  29. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548, 1998
  30. Berube F, Kaliaguine S, Microporous Mesoporous Mater., 115, 469, 2008
  31. Barczak M, Michalak-Zwierz K, Gdula K, Tyszczuk-Rotko K, Dobrowolski R, Dabrowski A, Microporous Mesoporous Mater., 211, 162, 2015
  32. Yilmaz MS, Piskin S, J. Therm. Anal. Calorim., 121, 1255, 2015
  33. Peng Z, Hwang JY, Int. Mater. Rev., 60, 30, 2015
  34. Chen LF, Microwave electronics: Measurement and materials characterization, John Wiley & Sons. Ltd., USA (2004).
  35. Mujumdar AS, Handbook of industrial drying, fourth Ed., CRC, Boca Raton (2006).
  36. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002
  37. Liu J, Cheng D, Liu Y, Wu Z, Energy Fuels, 27, 5416, 2013
  38. Klinthong W, Huang CH, Tan CS, Ind. Eng. Chem. Res., 55, 6481, 2106
  39. Wang X, Ma X, Song C, Locke DR, Siefert S, Winans RE, Mollmer J, Lange M, Moller A, Glaser R, Microporous Mesoporous Mater., 169, 103, 2013
  40. Heydari-Gorji A, Sayari A, Chem. Eng. J., 173(1), 72, 2011
  41. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 51(4), 1438, 2012
  42. Sayari A, Belmabkhout Y, J. Am. Chem. Soc., 132(18), 6312, 2010
  43. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239, 1983
  44. Donaldson TL, Nguyen YN, Ind. Eng. Chem. Fundam., 19, 260, 1980