Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1933-1941, 2020
Production of levulinic acid from wet microalgae in a biphasic one-pot reaction process
This work addresses the conversion of wet microalgae to levulinic acid (LA) using a one-pot reaction system. Utilizing moisture in microalgae forms a biphasic system with an organic solvent of 1, 2-dichloroethane (DCE) is formed. This system enhances the LA yield by making an acidic environment through the decomposition of DCE in a small quantity and the recovery of products in each aqueous and organic phase. With lipid-rich Nannochloropsis gaditana and carbohydrate-rich Chlorella species, the effects of reaction variables of temperature, water content, and DCE dosage on the LA production were investigated. The LA yield was 30.13 wt% and 28.15 wt% based on the mass of total hexoses (43-47 wt% of convertible hexoses) for the two types of microalgae at 160 °C, while the yield of free fatty acids reached 90.13 w/w% at 180 °C based on the esterifiable lipid. This biphasic system facilitates the forward reaction and the product recovery for concurrent reaction and separation.
[References]
  1. Lipinsky ES, Science, 212, 1465, 1981
  2. Son J, Kim B, Park J, Yang J, Lee JW, Bioresour. Technol., 259, 465, 2018
  3. Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493, 2020
  4. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965, 2019
  5. Lee JH, Lee HU, Lee JH, Lee SK, Yoo HY, Park CH, Kim SW, Korean J. Chem. Eng., 36(1), 71, 2019
  6. Supaporn P, Yeom SH, Korean J. Chem. Eng., 34(2), 360, 2017
  7. Kim B, Im H, Lee JW, Bioresour. Technol., 185, 421, 2015
  8. Dikshit PK, Jun HB, Kim BS, Korean J. Chem. Eng., 37(3), 387, 2020
  9. Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740, 2019
  10. Lee KS, Lee YJ, Chang HN, Jeong KJ, Korean J. Chem. Eng., 36(6), 903, 2019
  11. Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534, 2014
  12. Du ZY, Ma XC, Li Y, Chen P, Liu YH, Lin XY, Lei HW, Ruan R, Bioresour. Technol., 139, 397, 2013
  13. Koberg M, Cohen M, Ben-Amotz A, Gedanken A, Bioresour. Technol., 120, 4265, 2011
  14. Kim B, Heo HY, Son J, Yang J, Chang YK, Lee JH, Lee JW, Algal Res., 41, 101557, 2019
  15. Mafokoane M, Seguel J, Garcia R, Diaz de Leon JN, Sepulveda C, Escalona N, Catal. Today, In press (2020).
  16. Bozell JJ, Petersen GR, Green Chem., 12, 539, 2004
  17. Rackemann DW, Doherty WO, Biofuels, Bioproducts. Biorefining, 5, 198, 2011
  18. Gurbuz EI, Wettstein SG, Dumesic JA, ChemSusChem, 5, 383, 2012
  19. Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183, 2017
  20. Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84, 2018
  21. Lee JW, Westerberg AW, AIChE J., 47(6), 1333, 2001
  22. Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898, 2020
  23. Dutta S, Yu IKM, Tsang DCW, Su Z, Hu C, Wu KCW, Yip ACK, Ok YS, Poon CS, Bioresour. Technol., 298, 122544, 2020
  24. Zhu JY, Pan XJ, Zalesny RS, Appl. Microbiol. Biotechnol., 87(3), 847, 2010
  25. Tomas-Pejo E, Alvira P, Ballesteros M, Negro MJ, Biofuels: Alternative feedstocks and conversion processes, Academic press, Massachusetts (2011).
  26. Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K, Ind. Eng. Chem. Res., 53(29), 11611, 2014
  27. Zhang K, Pei ZJ, Wang DH, Bioresour. Technol., 199, 21, 2016
  28. Lee O, Seong DH, Lee CG, Lee EY, J. Ind. Eng. Chem., 29, 24, 2015
  29. Cao LC, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang SC, Ding SM, Wang LL, Ok YS, Bioresour. Technol., 273, 251, 2019
  30. Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess Biosyst Eng., 38, 207, 2015
  31. Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8, 2017
  32. Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386, 2015
  33. Chang C, Cen PL, Ma XJ, Bioresour. Technol., 98(7), 1448, 2007
  34. Shen JC, Wyman CE, AIChE J., 58(1), 236, 2012
  35. Runge T, Zhang CH, Ind. Eng. Chem. Res., 51(8), 3265, 2012
  36. Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ, Bioresour. Technol., 99(17), 8367, 2008
  37. Elumalai S, Agarwal B, Sangwan RS, Bioresour. Technol., 218, 232, 2016
  38. Ramli NAS, Amin NAS, Appl. Catal. B: Environ., 463, 487, 2015
  39. Park J, Kim B, Son J, Lee JW, Bioresour. Technol., 249, 494, 2018
  40. Kim B, Park J, Son J, Lee JW, Bioresour. Technol., 244, 423, 2017
  41. Sluiter A, et al., Determination of structural carbohydrates and lignin in biomass, National Renewable Energy Laboratory (NREL), Golden, CO (2008).
  42. Flannelly T, Lopes M, Kupiainen L, Dooley S, Leahy JJ, Rsc Adv., 6, 5797, 2016
  43. Victor A, Pulidindi IN, Gedanken A, Rsc Adv., 4, 44706, 2014
  44. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Molecules, 15, 5258, 2010
  45. Ma H, Wang FR, Yu YH, Wang LF, Li XH, Ind. Eng. Chem. Res., 54(10), 2657, 2015
  46. Seemala B, Haritos V, Tanksale A, ChemCatChem, 8, 640, 2016
  47. van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM, ChemSusChem, 6, 1745, 2013
  48. Lee SY, Cho JM, Chang YK, Oh YK, Bioresour. Technol., 244, 1317, 2017
  49. Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N, Schaub T, Holguin FO, Lammers P, Voorhies W, Deng SG, Appl. Energy, 165, 943, 2016