Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1915-1925, 2020
Removal of Cr(VI) from aqueous media using magnetic Co-reduced graphene oxide
The adsorption of Cr(VI) from an aqueous medium using magnetically functionalized cobalt nanoparticles-reduced graphene oxide (Co-rGO) was studied. Co-rGO was synthesized using the co-precipitation method. Graphene oxide and cobalt acetylacetonate were reduced together in water using sodium borohydride as a reducing agent. CorGO was used as the adsorbent material for the removal of dichromate ions in water. The prepared Co-rGO was characterized using powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analysis. Selected area electron diffraction was used to determine that the cobalt nanoparticles were on the surface of the reduced graphene oxide. The effect of the mass of the adsorbent material (Co-rGO), the concentration and pH of the Cr(VI) containing solution and the time of contact between the adsorbent and the Cr(VI) on the adsorption efficiency were investigated. It was found that the optimum adsorbent mass for the efficient removal of Cr(VI) from a fixed concentration of Cr(VI) of 100mg L?1 was 0.015 g, the optimum pH of the solution was 8, and the optimum contact time was 90 minutes. The experimental data obtained were fitted to the Langmuir, Freundlich, and Lui isotherms to obtain the characteristic parameters of each model. The experimental data fitted well to the Freundlich isotherm. The thermodynamic data was used to evaluate the nature of the adsorption. It was determined that the sorption process was physisorption. The kinetics of the adsorption process followed pseudo-second-order kinetic model.
[References]
  1. Brigatti MF, Franchini G, Lugli C, Medici I, Poppi L, Turci E, Appl. Geochem., 15, 1307, 2000
  2. Hsu LC, Wang SL, Tzou YM, Lin CF, Chen JH, J. Hazard. Mater., 142(1-2), 242, 2007
  3. Frois SR, Grassi MT, de Campos MS, Anal. Methods, 4, 4389, 2012
  4. Nigam A, Priya S, Bajpai P, Kumar S, Indian J. Med. Res., 139, 349, 2014
  5. Gupta VK, Gupta M, Sharma S, Water Res., 35, 1125, 2001
  6. Dubey R, Bajpai J, Bajpai AK, J. Water Process. Eng., 5, 83, 2015
  7. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S, Environ. Int., 31, 739, 2005
  8. Yusuf M, Elfghi FM, Zaidi SA, Abdullah EC, Khan MA, RSC. Adv., 5, 50392, 2015
  9. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E, Chemosphere, 56, 91, 2004
  10. Ayoub G, Semerjian L, Acra A, Fadel M, Koopman B, J. Environ. Eng., 127, 196, 2001
  11. Matlock MM, Howerton BS, Atwood DA, Ind. Eng. Chem. Res., 41(6), 1579, 2002
  12. Zhang Y, Yan Xu W, Guo X, Cui L, Goa L, Wei Q, Du B, J. Mol. Liq., 191, 177, 2014
  13. Soylak M, Unsal YE, Kizil N, Aydin A, Food Chem. Toxicol., 2, 517, 2010
  14. Saleem H, Haneef M, Abbasi HY, Mater. Chem. Phys., 204, 1, 2018
  15. Halouane F, Oz Y, Meziane D, Barras A, Juraszek J, Singh SK, Kurungot S, Shaw PK, Sanyal R, Boukherroub R, Sanyal A, Szunerits S, J. Colloid Interface Sci., 507, 360, 2017
  16. Wang H, Yuan XZ, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y, Appl. Surf. Sci., 279, 432, 2013
  17. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sum Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806, 2010
  18. Wu H, Shao M, Gu J, Wei X, Mater. Lett., 58, 2166, 2004
  19. Salman SA, Usami T, Kuroda K, Okido M, J. Nanotechnol., 2014, 1, 2014
  20. Prajapati AK, Mondal MK, Korean J. Chem. Eng., 36(11), 1900, 2019
  21. Lima DR, Hosseini-Bandegharaei A, Thue PS, Limam EC, et al., Colloids Surf. A: Physicochem. Eng. Asp., 583, 123966, 2019
  22. Muszynski R, Seger B, Kamat PV, J. Phys. Chem. C. Lett., 112, 5236, 2008
  23. Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Ramirez SL, Gardea-Torresdey JL, J. Chem. Thermodyn., 37(4), 343, 2005
  24. Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN, J. Environ. Manage., 69, 229, 2003
  25. Chaba JM, Nomngongo PN, J. Water. Process Eng., 23, 50, 2018
  26. Yang HT, Sum YK, Shen CM, Yang TZ, Gao HJ, Surf. Interface Anal., 36, 155, 2004
  27. Gonsalves IR, Verenkar VMS, J. Meth. Anal. Calorim., 108, 877, 2012
  28. Park CS, Kim DH, Shin BJ, Kim DY, Lee HK, Tae HS, Materials, 9, 812, 2016
  29. Diez-Betru X, Alvarz-Garcia S, Botas C, Alvarez P, Sachez-Marcos J, Prieto C, Menendez R, de Andres A, J. Mater. Chem. C, 1, 6905, 2013
  30. Al-Marri AH, Khan M, Khan M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Labis JP, Siddiqui MRH, Tahir MN, Int. J. Mol. Sci., 16(1), 1131, 2015
  31. Kim SC, Kim BH, Kim SJ, Lee YS, Kim HG, Lee H, Park SH, Jung SC, J. Nanosci. Nanotechnol., 15, 228, 2015
  32. Kumar PR, Kollu P, Santhosh C, Rao KEV, Kim DK, Grace AN, New J. Chem., 389, 3654, 2014
  33. Ji Z, Shen X, Zhu G, Zhou A, Yuan A, J. Mater. Chem., 22, 3471, 2012
  34. Zhang YW, Ma HL, Peng J, Zhai ML, Yu ZZ, J. Mater. Sci., 48(5), 1883, 2013
  35. Zhu J, Wei S, Gu H, Rapole SR, Wang Q, Lou Z, Haldolaarachchige N, Young DP, Guo Z, Environ. Sci. Technol., 46, 977, 2012
  36. Hu J, Chen G, Langmuir, 24, 11173, 2005
  37. Al Nafiey A, Addad A, Sieber B, Chastanet G, Barras A, Szunerits S, Boukherroub R, Chem. Eng. J., 322, 375, 2017
  38. Lv XS, Xue XQ, Jiang GM, Wu DL, Sheng TT, Zhou HY, Xu XH, J. Colloid Interface Sci., 417, 51, 2014
  39. Yavari S, Mahmodi NM, Teymouri P, Shahmoradi B, Maleki A, J. Taiwan Inst. Chem. E., 59, 320, 2016
  40. Phanichphant S, Nakaruk A, Channei D, Appl. Surf. Sci., 387, 214, 2019
  41. Cui LM, Guo XY, Wei Q, Wang YG, Gao L, Yan LG, Yan T, Du B, J. Colloid Interface Sci., 439, 112, 2015
  42. Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, Korean J. Chem. Eng., 36(7), 1057, 2019
  43. Lafi R, Fradj A, Hafiane A, Hameed BH, Korean J. Chem. Eng., 31(12), 2198, 2014
  44. Wang P, Cao M, Wang C, Ao Y, Qian JHJ, Appl. Surf. Sci., 290, 119, 2014
  45. Song M, Duan Z, Qin R, Xu X, Liu S, Song S, Zhang M, Li Y, Shi J, Korean J. Chem. Eng., 36(6), 869, 2019
  46. Babu B, Gupta S, Adsorption, 14, 85, 2008