Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1907-1914, 2020
Simultaneous removal of NOx and SO2 using two-stage O3 oxidation combined with Ca(OH)2 absorption
This paper proposes two-stage O3 oxidation combined with Ca(OH)2 for simultaneous removal of NOx and SO2 (NOx: Nitrogen oxides including NO, NO2 and N2O5). In two-stage oxidation, NO was first oxidized to NO2 in an oxidation tube, and NO2 was further oxidized into N2O5 in the spray tower. NOx and SO2 were simultaneously removed in the spray tower. This method can effectively reduce the extra waste of O3 caused by the decomposition of N2O5, especially at high temperature. Effects of various factors on denitrification efficiency were investigated. The results showed that the NOx removal efficiency decreased and O3 extra consumption ratio increased with the increase of oxidation temperature or oxidation reaction time. When the O3/NO molar ratio was 1.8, one-stage O3 oxidation at 150 °C extra wasted 33.3% of O3. With the increase of O3 concentration at site 2, the NOx removal efficiency first increased and then stabilized. Compared with the one-stage O3 oxidation-absorption, the two-stage oxidation-absorption improved NOx removal efficiency from 62.5% to 89%. In addition, the increase of CaSO3 slurry concentration had little effect on the denitrification efficiency.
[References]
  1. Ramanathan V, Feng Y, Atmos. Environ., 43, 37, 2009
  2. Li K, Chen L, White SJ, Han K, Lv B, Bao K, Wu X, Gao X, Azzi M, Cen K, Atmos. Res., 192, 38, 2017
  3. Chen W, Hu F, Qin L, Han J, Zhao B, Tu Y, Yu F, Catalysts, 9, 90, 2019
  4. Chen WS, Li Z, Hu FL, Qin LB, Han J, Wu GM, Appl. Surf. Sci., 439, 75, 2018
  5. Li JH, Chang HZ, Ma L, Hao JM, Yang RT, Catal. Today, 175(1), 147, 2011
  6. Yu J, Guo F, Wang YL, Zhu JH, Liu YY, Su FB, Gao SQ, Xu GW, Appl. Catal. B: Environ., 95(1-2), 160, 2010
  7. Li Z, Shen Y, Li X, Zhu S, Hu M, Catal. Commun., 82, 55, 2016
  8. Li Y, Li JP, Xue ZH, New Carbon Mater., 32, 35, 2017
  9. Sousa JPS, Pereira MFR, Figueiredo JL, Catal. Today, 176(1), 383, 2011
  10. Zhang WJ, Rabiei S, Bagreev A, Zhuang MS, Rasouli E, Appl. Catal. B: Environ., 83(1-2), 63, 2008
  11. Zhang WJ, Bagreev A, Rasouli F, Ind. Eng. Chem. Res., 47(13), 4358, 2008
  12. Sun WY, Ding SL, Zeng SS, Su SJ, Jiang WJ, J. Hazard. Mater., 192(1), 124, 2011
  13. Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Process., 61, 69, 2012
  14. Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450, 2014
  15. Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Sci., 66(14), 3386, 2011
  16. Van Durme J, Dewulf J, Leys C, Van Langenhove H, Appl. Catal. B: Environ., 78(3-4), 324, 2008
  17. Skalska K, Miller JS, Ledakowicz S, Sci. Total. Environ., 408, 3976, 2010
  18. Han ZT, Yang SL, Pan XX, Zhao DS, Yu JQ, Zhou YT, Xia PF, Zheng DK, Song YH, Yan ZJ, Energy Fuels, 31(3), 3047, 2017
  19. Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645, 2013
  20. Chu H, Chien TW, Li SY, Sci. Total Environ., 275, 127, 2001
  21. Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8, 2015
  22. Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54, 2014
  23. Hao RL, Mao XZ, Wang Z, Zhao Y, Wang TH, Sun ZH, Yuan B, Li YK, J. Hazard. Mater., 368, 234, 2019
  24. Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117, 2015
  25. Raghunath CV, Mondal MK, Chem. Eng. J., 314, 537, 2017
  26. Raghunath CV, Mondal MK, Asia-Pacific. J. Chem. Eng., 11, 88, 2016
  27. Chen J, Zeng X, Deng Y, Mar. Pollut. Bull., 113, 87, 2016
  28. Adewuyi YG, Khan MA, Chem. Eng. J., 304, 793, 2016
  29. Adewuyi YG, Khan MA, Chem. Eng. J., 281, 575, 2015
  30. Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Chem. Eng. J., 243, 176, 2014
  31. Liu YX, Wang Q, Yin YS, Pan JF, Zhang J, Chem. Eng. Res. Des., 92(10), 1907, 2014
  32. Hao RL, Mao YM, Mao XZ, Wang Z, Gong YP, Zhang ZL, Zhao Y, Chem. Eng. J., 365, 282, 2019
  33. Sun CL, Zhao N, Wang HQ, Wu ZB, Energy Fuels, 29(5), 3276, 2015
  34. Ma Q, Wang ZH, Lin FW, Kuang M, Whiddon R, He Y, Liu JZ, Energy Fuels, 30(3), 2302, 2016
  35. Skalska K, Miller J, Ledakowicz S, Chem. Pap, 64, 269, 2010
  36. Zhou S, Zhou JX, Feng YM, Zhu YQ, Ind. Eng. Chem. Res., 55(20), 5825, 2016
  37. Wang ZH, Zhang X, Zhou ZJ, Chen WY, Zhou JH, Cen KF, Energy Fuels, 26(9), 5583, 2012
  38. Xing Y, Li L, Lu P, Cui J, Li Q, Yan B, Jiang B, Wang M, Environ. Sci. Pollut. Res., 25, 6456, 2018
  39. Tang NA, Liu Y, Wang HQ, Xiao L, Wu ZBA, Chem. Eng. J., 160(1), 145, 2010
  40. Wu Q, Sun CL, Wang HQ, Wang T, Wang YJ, Wu ZB, Chem. Eng. J., 341, 157, 2018
  41. Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817, 2007
  42. Zou Y, Liu X, Zhu T, Tian M, Cai M, ACS. Omega, 4, 21091, 2019
  43. Sun CL, Zhao N, Zhuang ZK, Wang HQ, Liu Y, Weng XL, Wu ZB, J. Hazard. Mater., 274, 376, 2014
  44. Ji RJ, Wang J, Xu WQ, Liu XL, Zhu TY, Yan CY, Song JF, Ind. Eng. Chem. Res., 57(43), 14440, 2018
  45. Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101, 2016
  46. Chen GQ, Gao JH, Gao JM, Du QA, Fu XL, Yin YJ, Qin YK, Ind. Eng. Chem. Res., 49(23), 12140, 2010
  47. Littlejohn D, Wang Y, Chang SG, Environ. Sel. Technol, 27, 2162, 1993