Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1888-1898, 2020
A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR
This study explored the effects of polyethylene terephthalate (PET) blending during the pyrolysis of oil shale (OS). Dynamic pyrolysis and co-pyrolysis tests at heating rates in the range from 5 to 40 °C/min were carried out using a thermogravimetric analyzer (TGA) coupled to a Fourier transform infrared spectrometer (FT-IR) to determine the kinetic parameters of the process and for online detection of evolved gasses. Pyrolytic decomposition of OS included a multi-stage decomposition process, while PET decomposed only in a single step. The kinetics of pyrolysis and co-pyrolysis was determined via model-free iso-conversional methods, namely Friedman, FWO, Starink, Vyazovkin, in a conversion degree range of 0.1-0.9. The kinetic models were validated with the obtained data to describe pyrolytic and copyrolytic degradation mechanisms, and the regression coefficients were between 0.9823 and 0.9999. The results showed that the activation energy of co-pyrolysis was evidently lower than that of PET or OS pyrolysis. This led to the conclusion that co-pyrolysis could be a potential method for obtaining shale oil due to the synergy between OS and PET.
[References]
  1. Ong HC, Chen WH, Farooq A, Gan YY, Lee KT, Ashokkumar V, Renew. Sust. Energ. Rev., 113, 109266, 2019
  2. Tahmasebi A, Maliutina K, Yu J, Korean J. Chem. Eng., 36(3), 393, 2019
  3. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512, 2011
  4. Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493, 2020
  5. Siramard S, Lin LX, Zhang C, Lai DG, Cheng S, Xu GW, Fuel Process. Technol., 148, 248, 2016
  6. Jiang HF, Deng SH, Chen J, Zhang MY, Li S, Shao YF, Yang JQ, Li JF, Energy Conv. Manag., 143, 505, 2017
  7. Culin C, Tente K, Konist M, Maaten B, Loo L, Suuberg E, Kulaots I, Oil Shale, 36(3), 353, 2019
  8. Chang Z, Chu M, Zhang C, Bai S, Lin H, Ma L, J. Anal. Appl. Pyrolysis, 130, 269, 2018
  9. Kilic M, Putun AE, Uzun BB, Putun E, Energy Conv. Manag., 78, 461, 2014
  10. Bozkurt PA, Tosun O, Canel M, J. Energy Inst., 90, 355, 2017
  11. Tu J, Sheng JJ, J. Taiwan Inst. Chem. E., 106, 169, 2020
  12. Chang Z, Chu M, Zhang C, Bai S, Lin H, Ma L, Korean J. Chem. Eng., 34(12), 3111, 2017
  13. Al-Makhadmeh L, Maier J, Al-Harahsheh M, Scheffknecht G, Fuel, 103, 421, 2013
  14. Al-Harahsheh A, Al-Harahsheh M, Al-Otoom A, Allawzi M, Fuel Process. Technol., 90(6), 818, 2009
  15. Amer MW, Alhesan JSA, Marshall M, Awwad AM, Al-Ayed OS, J. Anal. Appl. Pyrolysis, 140, 219, 2019
  16. Shah J, Jan MR, J. Taiwan Inst. Chem. E., 51, 96, 2015
  17. Ryu HW, Tsang YF, Lee HW, Jae J, Jung SC, Lam SS, Park ED, Park YK, Chem. Eng. J., 373, 375, 2019
  18. Zhou LM, Luo TA, Huang QW, Energy Conv. Manag., 50(3), 705, 2009
  19. Wang X, Ma D, Jin Q, Deng S, Stancin H, Tan H, Mikulcic H, Fuel Process. Technol., 194, 106127, 2019
  20. Park S, Jae J, Farooq A, Kwon EE, Park ED, Ha JM, Jung SC, Park YK, Appl. Energy, 255, 113801, 2019
  21. Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A, Fuel Process. Technol., 89(11), 1000, 2008
  22. Ballice L, Yuksel M, Saglam M, Reimert R, Schulz H, Fuel, 77(13), 1431, 1998
  23. Zhang J, Zhong Z, Zhang B, Xue Z, Guo F, Wang J, Clean Technol. Environ. Policy, 18, 1621, 2016
  24. Till Z, Varga T, Soja J, Miskolczi N, Chovan T, Energy Conv. Manag., 173, 320, 2018
  25. Zhang ZZ, Zhu MM, Zhang DK, Appl. Energy, 220, 87, 2018
  26. Williams EA, Williams PT, J. Chem. Technol. Biotechnol., 70(1), 9, 1997
  27. Ozsin G, Putun AE, J. Clean Prod., 205, 1127, 2018
  28. Yoshioka T, Grause G, Eger C, Kaminsky W, Okuwaki A, Polym. Degrad. Stabil., 86, 499, 2004
  29. Cepeliogullar O, Putun AE, J. Anal. Appl. Pyrolysis, 110, 363, 2014
  30. Park JM, Keel S, Yun JH, Yun JH, Lee SS, Korean J. Chem. Eng., 34(8), 2204, 2017
  31. Yang F, Yu Q, Xie H, Zuo Z, Hou L, Qin Q, Korean J. Chem. Eng., 35(8), 1626, 2018
  32. Ozsin G, Putum AE, Korean J. Chem. Eng., 35(2), 428, 2018
  33. Parthasarathy P, Choi HS, Hwang JG, Park HC, Korean J. Chem. Eng., 34(6), 1678, 2017
  34. Boytsova A, Kondrasheva N, Ancheyta J, Energy Fuels, 32(2), 1132, 2018
  35. Yao C, Tian H, Hu Z, Yin Y, Chen D, Yan X, Korean J. Chem. Eng., 35(2), 511, 2018
  36. Lin Y, Liao YF, Yu ZS, Fang SW, Lin YS, Fan YL, Peng XW, Ma XQ, Energy Conv. Manag., 118, 345, 2016
  37. Huang JL, Liu JY, Chen JC, Xie WM, Kuo JH, Lu XW, Chang KL, Wen ST, Sun G, Cai HM, Buyukada M, Evrendilek F, Bioresour. Technol., 266, 389, 2018
  38. Friedman HL, J. Polym. Sci. Pol. Sym. C, 6, 183, 1964
  39. Flynn JH, Wall LA, J. Res. Nat. Bur. Stand, 70, 487, 1966
  40. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  41. Starink MJ, Thermochim. Acta, 288(1-2), 97, 1996
  42. Vyazovkin S, J. Therm. Anal., 49, 1493, 1997
  43. Niu SL, Zhou Y, Yu HW, Lu CM, Han KH, Energy Conv. Manag., 149, 495, 2017
  44. Wang XB, Deng SH, Tan HZ, Adeosun A, Vujanovic M, Yang FX, Duic N, Energy Conv. Manag., 118, 399, 2016
  45. Lai DG, Zhang GY, Xu GW, Fuel Process. Technol., 158, 191, 2017
  46. Holland BJ, Hay JN, Polymer, 43(6), 1835, 2002
  47. Williams PT, Ahmad N, Appl. Energy, 66(2), 113, 2000
  48. Jaber JO, Probert SD, Williams PT, Energy, 24(9), 761, 1999
  49. Williams PT, Ahmad N, Fuel, 78, 653, 1999
  50. Chen ZH, Zhu QJ, Wang X, Xiao B, Liu SM, Energy Conv. Manag., 105, 251, 2015
  51. Tang L, Yang Y, Meng Y, Wang J, Jiang P, Pang CH, Wu T, Energy Procedia, 158, 1694, 2019
  52. Yuan XS, He T, Cao HL, Yuan QX, Renew. Energy, 107, 489, 2017
  53. Zhao S, Liu M, Zhao L, Lu J, Korean J. Chem. Eng., 34(12), 3077, 2017
  54. Dai MQ, Yu ZS, Fang SW, Ma XQ, Energy Conv. Manag., 192, 1, 2019