Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1867-1877, 2020
Non-catalytic oxidative desulfurization of gas condensate by ozone and process optimization using response surface methodology
This study modelled and optimized the oxidative desulfurization of gas condensate with ozone, as a gaseous oxidant. Experiments in this study were non-catalytic, and sulfone extraction was done by acetone. Response surface methodology was applied for the experimental design, mathematical modeling, and optimization using Design-Expert® software. The influence of effective variables and their interaction on the response was also investigated. For the first time, non-catalytic ozonation of this feed was performed on the oxidative desulfurization process. The developed model properly fitted the experimental results. The accuracy of the model was confirmed, while this model predicted 95% desulfurization would result in the optimized conditions, and the actual value of desulfurization obtained was 95.8%. Further, the results indicated interaction between the superficial gas velocity of ozone and coefficient of oxidant-to-sulfur molar ratio. GC-SCD revealed that DBT was the most refractory component in comparison with the other sulfur components in the gas condensate. It was also found that 84.3% desulfurization occurred just with oxidation and sedimentation of sulfones and without solvent extraction.
[References]
  1. Kang L, Liu HY, He HJ, Yang CP, Fuel, 234, 1229, 2018
  2. Safa MA, Al-Majren R, Al-Shamary T, Park JI, Ma XL, Fuel, 194, 123, 2017
  3. Chen K, Zhang XM, Yang XF, Jiao MG, Zhou Z, Zhang MH, Wang DH, Bu XH, Appl. Catal. B: Environ., 238, 263, 2018
  4. Ghaedian M, Bazmi M, Shafeghat A, Mohammadi AK, Rabiei Z, Naderi F, Pet. Coal, 55, 361, 2013
  5. Babich IV, Moulijn JA, Fuel, 82(6), 607, 2003
  6. Yang C, Ji HW, Chen CC, Ma WH, Zhao JC, Appl. Catal. B: Environ., 235, 207, 2018
  7. Qian EW, J. Jpn. Pet. Inst., 51, 14, 2008
  8. Zhang Y, Li G, Kong LH, Lu H, Fuel, 219, 103, 2018
  9. Ma XL, Zhou AN, Song CS, Catal. Today, 123(1-4), 276, 2007
  10. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG, J. Chem. Technol. Biotechnol., 85(7), 879, 2010
  11. Alibolandi M, Ghaedian M, Shafeghat A, Royaee SJ, Darian JT, J. Sci. I. R., 31, 13, 2020
  12. Han X, Wang A, Wang X, Li X, Wang Y, Hu Y, Catal. Commun., 42, 6, 2013
  13. Wang JY, Zhang LH, Sun YL, Jiang B, Chen Y, Gao X, Yang HW, Fuel Process. Technol., 177, 81, 2018
  14. Imtiaz A, Waqas A, Muhammad I, Chin. J. Catal., 34, 1839, 2013
  15. Zhou XR, Li J, Wang XN, Jin K, Ma W, Fuel Process. Technol., 90(2), 317, 2009
  16. Li SW, Gao RM, Zhao JS, Fuel, 237, 840, 2019
  17. Zeng XY, Xiao XY, Li Y, Chen JY, Wang HL, Appl. Catal. B: Environ., 209, 98, 2017
  18. Sundararaman R, Ma XL, Song CS, Ind. Eng. Chem. Res., 49(12), 5561, 2010
  19. Li SW, Li JR, Gao Y, Liang LL, Zhang RL, Zhao JS, Fuel, 197, 551, 2017
  20. Sampanthar JT, Xiao H, Dou H, Nah TY, Rong X, Kwan WP, Appl. Catal. B: Environ., 63(1-2), 85, 2006
  21. Wang J, Zhao D, Li K, Energy Fuels, 24, 2527, 2010
  22. Wang LK, Hung YT, Lo HH, Yapijakis C, Handbook of industrial and hazardous waste treatment, 2nd Ed., Taylor & Francis e-Library, New York (2006).
  23. Zhang W, Xie G, Gong Y, Zhou D, Zhang C, Ji Q, J. Chem. Eng. Jpn., 53, 68, 2020
  24. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H, J. Ind. Eng. Chem., 20, 2769, 2013
  25. Pouladi B, Fanaei MA, Baghmisheh G, J. Clean Prod., 209, 965, 2019
  26. Akopyan AV, Grigoriev DA, Polikarpova PL, Eseva EA, Litvinova VV, Anisimov AV, Petrol. Chem., 57, 904, 2017
  27. Akbari A, Chamack M, Omidkhah M, J. Mater. Sci., 55(15), 6513, 2020
  28. Ban LL, Liu P, Ma CH, Dai B, Catal. Today, 211, 78, 2013
  29. Wu P, Wu Y, Chen L, HeJ, Hua M, Zhu F, Chu X, Xiong J, He M, Zhu W, Li H, Chem. Eng. J., 380, 122526, 2020
  30. Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Hackaml R, Akiyama H, IEEE Trans. Dielectr. Electr. Insul., 7, 849, 2000
  31. Eliasson B, Hirth M, Kogelschatz U, J. Phys. D-Appl. Phys., 20, 1421, 1987
  32. Sehested K, Cotfltzen H, Holcman J, Flscher CH, Hart EJ, Environ. Sci. Technol., 25, 1589, 1991
  33. Flamm DL, Environ. Sci. Technol., 11, 978, 1977
  34. Chen WM, Hong W, Geng JF, Wu XS, Ji W, Li LY, Qui L, Jin X, Phys. C, 270, 349, 1996
  35. Makela M, Energy Conv. Manag., 151, 630, 2017
  36. Montgomery DC, Design and analysis of experiments, 6th Ed., Wiley, United States (2005).
  37. Lin F, Wang Z, Shao J, Yuan D, He Y, Zhu Y, Cen K, Chin. J. Catal., 38, 1270, 2017
  38. Ismagilov Z, Yashnik S, Kerzhentsev M, Parmon V, Bourane A, Al-Shahrani FM, Hajji AA, Koseoglu OR, Catal. Rev.-Sci. Eng., 53(3), 199, 2011
  39. Kantarci N, Borak F, Ulgen KO, Process Biochem., 40(7), 2263, 2005
  40. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965, 2008
  41. Moaseri E, Shahsavand A, Bazubandi B, Energy Fuels, 28(2), 825, 2014
  42. Li SW, Gao RM, Zhang W, Zhang Y, Zhao JS, Fuel, 221, 1, 2018
  43. Dizaji AK, Mortaheb HR, Mokhtarani B, Chem. Eng. J., 335, 362, 2018
  44. Bird RB, Stewart WE, Lightfoot EN, Transport phenomena, 2nd Ed., Wiley, United States (2001).
  45. Wang B, Zhu JP, Ma HZ, J. Hazard. Mater., 164(1), 256, 2009