Issue
Korean Journal of Chemical Engineering,
Vol.37, No.11, 1829-1835, 2020
Optimizing conical nozzle of venturi ejector in ejector loop reactor using computational fluid dynamics
The structure of a conical nozzle is critical to the gas induction of a venturi ejector. In this work, the effect of nozzle structure on the gas induction was investigated by means of multiphase CFD and validating experiments. Under different structures, the maximal gas induction was obtained through analyzing the nozzle outlet velocity (NOV), nozzle inlet velocity (NIV), as well as nozzle shrinking angle (NSA). The simulated inlet pressure is positively proportional to inlet flow rate, which is in good agreement with experimental results. The simulated results reveal that the inlet pressure and gas induction increase with the increasing NOV. Considering the operational characteristics of centrifugal pump, the recommended NOV is about 21.8m/s. NIV and NSA show little impact on gas induction and inlet pressure. Based on the pipeline energy consumption, the recommended NIV is the same as the outlet velocity of centrifugal pump. The recommended NSA is about 20o to obtain the maximal gas induction.
[References]
  1. Gao Y, Gao X, Hong D, Cheng Y, Wang L, Li X, AIChE J., 65, 16537, 2019
  2. Poissonnier J, Thybaut JW, Marin GB, AIChE J., 63(1), 111, 2017
  3. Chu QY, Wang P, He GK, Li MD, Zhu HJ, Liu R, Pei FB, Chem. Eng. J., 325, 169, 2017
  4. Khan Z, Joshi JB, Chem. Eng. Sci., 127, 323, 2015
  5. Ludwig W, Szafran RG, Kmiec A, Dziak J, Pro. Eng., 42, 1157, 2012
  6. Mathpati CS, Deshpande SS, Joshi JB, AIChE J., 55(10), 2526, 2009
  7. Gao YX, Hong D, Cheng YW, Wang LJ, Li X, Chem. Eng. Res. Des., 141, 66, 2019
  8. Weber S, Schaepe S, Freyer S, Kopf MH, Dietzsch C, Chem. Eng. Process., 131, 43, 2018
  9. van Dierendonck LL, Zahradnik J, Linek V, Ind. Eng. Chem. Res., 37(3), 734, 1998
  10. Esteban J, Warmeling H, Vorholt AJ, Chem. Ing. Tech., 91(5), 560, 2019
  11. Warmeling H, Janz D, Peters M, Vorholt AJ, Chem. Eng. J., 330, 585, 2017
  12. Poissonnier J, Thybaut JW, Marin GB, Ind. Eng. Chem. Res., 56(48), 14192, 2017
  13. Di Serio M, Tesser R, Santacesaria E, Ind. Eng. Chem. Res., 44(25), 9482, 2005
  14. Warmeling H, Behr A, Vorholt AJ, Chem. Eng. Sci., 149, 229, 2016
  15. Evans GM, Bin AK, Machniewskj PM, Chem. Eng. Sci., 56(3), 1151, 2001
  16. Havelka P, Linek V, Sinkule J, Zahradnik J, Fialova M, Chem. Eng. Sci., 55(3), 535, 2000
  17. Sharma DV, Patwardhan AW, Ranade VV, Chem. Eng. Res. Des., 125, 24, 2017
  18. Kim YK, Lee DY, Kim HD, Ahn JH, Kim KC, J. Mech. Sci. Technol., 26, 2773, 2012
  19. Song X, Cao M, Shin W, Cao W, Kang S, Park Y, Math. Probl. Eng., 2014, 1, 2014
  20. Sharma D, Patwardhan A, Ranade V, Energy, 164, 10, 2018
  21. Zhang K, Zhu X, Ren X, Qiu Q, Shen S, Appl. Therm. Eng., 126, 594, 2017
  22. Chen W, Chen H, Shi C, Xue K, Chong D, Yan J, Appl. Therm. Eng., 99, 476, 2016
  23. Li C, Li Y, Wang L, Appl. Therm. Eng., 48, 237, 2012
  24. Li C, Li YZ, Chem. Eng. Sci., 66(3), 405, 2011
  25. Bumrungthaichaichan E, Korean J. Chem. Eng., 33(11), 3050, 2016
  26. Yuan GF, Zhang LX, Zhang HF, Wang ZF, Desalination, 276(1-3), 89, 2011
  27. Kandakure MT, Gaikar VG, Patwardhan AW, Chem. Eng. Sci., 60(22), 6391, 2005
  28. Zheng P, Li B, Qin JX, Energy, 155, 1129, 2018
  29. Singh G, Sundararajan T, Bhaskaran KA, J. Fluids Eng., 125, 652, 2003