Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1795-1802, 2020
Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries
A silicon/porous multi-walled carbon nanotubes composite was synthesized using a simple method. A mixture comprising silicon nanoparticles and multi-walled carbon nanotubes was prepared by a mini ball milling method followed by annealing at low temperature. The low-temperature annealing treatment allows the aggregation of silicon nanoparticles and propels them to adhere to the outer walls of carbon nanotubes without the formation of a SiOx layer on Si nanoparticles. Mild oxidation occurring on the carbon tube walls provides additional surface defects. The obtained composite, which was studied as an anode for Li-ion batteries, exhibited excellent cyclability and superior rate capability compared with pristine silicon nanoparticles. The improved electrochemical performance of the composite can be attributed to the electrically conductive carbon tubes, easy access of the electrolyte ions into the porous nanotube walls, and mechanical support provided by the carbon matrix. As a result, the proposed composite can sustain high discharge capacities of 1,685mAh g-1 at 1C rate after 80 cycles and 913mAh g-1 at 5C rate after 100 cycles.
[References]
  1. Scrosati B, Nature, 373(6515), 557, 1995
  2. Tarascon JM, Armand M, Nature, 414, 359, 2001
  3. Obrovac MN, Christensen L, Electrochem. Solid-State Lett., 7, A93, 2004
  4. Armand M, Tarascon JM, Nature, 451, 7179, 2008
  5. Nitta N, Wu F, Lee JT, Yushin G, Mater Today, 18, 252, 2015
  6. Wu YP, Rahm E, Holze R, J. Power Sources, 114, 2, 2003
  7. Liu DH, Lu HY, Wu XL, Wang J, Yan X, Zhang JP, Geng H, Zhang Y, Yan Q, Nanoscale Horiz., 1, 6, 2016
  8. Li H, Huang X, Chen L, Wu Z, Liang Y, Electrochem. Solid State Lett., 2, 11, 1999
  9. Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J, Adv. Mater., 19, 22, 2007
  10. Szczech JR, Jin S, Energy Environ. Sci., 4, 1, 2011
  11. Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, et al., Nano Lett., 10, 5, 2010
  12. Xiao J, Xu W, Wang D, Choi D, Wang W, Li X, Graff GL, Liu J, Zhanget JG, J. Electrochem. Soc., 157, 10, 2010
  13. Wang JW, He Y, Fan F, Liu XH, Xia S, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T, Nano Lett., 13, 2, 2013
  14. Yu Y, Gu L, Zhu C, Tsukimoto S, VanAken PA, Maier J, Adv. Mater., 22, 20, 2010
  15. Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1, 2017
  16. Wen ZS, Yang J, Wang BF, Wang K, Liu Y, Electrochem. Commun., 5, 2, 2003
  17. Fagiolari L, Bella F, Energy Environ. Sci., 12, 3437, 2019
  18. Perreault LL, Colo F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Brovarone CV, Florek J, Kleitz F, Gerbaldi C, Adv. Eng. Mater., 8, 180243, 2018
  19. Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X, Nat. Rev. Mat., 4, 45, 2019
  20. Jeong JH, Jung DW, Kong BS, Shin CM, Oh ES, Korean J. Chem. Eng., 28(11), 2202, 2011
  21. Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500, 2016
  22. Vovk OM, Na BK, Cho BW, Lee JK, Korean J. Chem. Eng., 26(4), 1034, 2009
  23. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918, 2015
  24. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440, 2018
  25. Liu J, Li D, Wang Y, Zhang S, Kang Z, Xie H, Sun L, J. Energy Chem., 47, 66, 2020
  26. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, et al., Adv. Funct. Mater., 28, 170677, 2018
  27. Shih HJ, Chang JY, Cho CS, Li CC, Carbon, 159, 401, 2020
  28. Bella F, Pugliese D, Zolin L, Gerbaldi C, Electrochim. Acta, 237, 87, 2017
  29. Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Gerbaldi C, Carbon, 107, 811, 2016
  30. Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1, 2017
  31. Wen ZS, Yang J, Wnag BF, Wang K, Liu Y, Electrochem. Commun., 5, 2, 2003
  32. Si Q, Kawakubo M, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N, J. Power Sources, 248, 1275, 2014
  33. Chiang YM, Science, 330, 6010, 2010
  34. Saeed K, Khan I, Carbon Lett., 14, 3, 2013
  35. Iijima S, Nature, 354, 56, 1991
  36. Wang K, Luo S, Wu Y, He X, Zhao F, Wang J, Jiang K, Fan S, Adv. Funct. Mater., 23, 7, 2013
  37. Gohier A, Laik B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Van PT, Adv. Mater., 24, 19, 2012
  38. Wang W, Epur R, Kumta PN, Electrochem. Commun., 13, 5, 2011
  39. Park KS, Min KM, Seo SD, Lee GH, Shim HW, Kim DW, Mater. Res. Bull., 48, 4, 2013
  40. Hatipoglu G, Alaf M, Akbulut H, J. Mater. Sci.: Mater. Electron., 3, 2067, 2019
  41. Wang W, Kumta PN, ACS Nano., 4, 4, 2010
  42. Ji L, Zhang X, Carbon, 47, 14, 2009
  43. Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V, J. Raman Spectrosc., 38, 6, 2007
  44. Cebik J, McDonough JK, Peerally F, Medrano R, Neitzel I, Gogotsi Y, Osswald S, Nanotechnology, 24, 20, 2013
  45. Arani HE, Mirhabibi AR, Collins S, Daroughegi R, et al., RSC Adv., 7, 9, 2017
  46. Shen X, Mu D, Chen S, Xu B, Wu B, Wu F, J. Alloy. Compd., 552, 60, 2013
  47. Epur R, Ramanathan M, Datta MK, Hong DH, Jampani PH, Gattu B, Kumt PN, Nanoscale, 7, 8, 2015
  48. Arunakumari N, Venugopal N, Sohn KY, Sci. Adv. Mater., 12, 337, 2020
  49. Cui LF, Yang Y, Hsu CM, Cui Y, Nano Lett., 9, 9, 2009
  50. Yang X, Wen Z, Xu X, Lin B, Lin Z, J. Electrochem. Soc., 153, 7, 2006
  51. Cui LF, Hu L, Choi JW, Cui Y, ACS Nano., 4, 7, 2007
  52. Gao P, Nuli Y, He YS, Wang J, Minett AI, Yang J, Chen J, Chem. Commun., 46, 48, 2010
  53. Eom JY, Kwon HS, ACS Appl. Mater. Interfaces, 3, 4, 2011