Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1786-1794, 2020
Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption
This work presents a simple method for the preparation of the Mg-doped nanocomposite copper silicates (Mgx-Cu1-x-SiO3) (x=0.25, 0.5, 0.75 and 0.9) using coal gangue waste as the silicon source for CO2 capture at low temperature. The as-prepared Mgx-Cu1-x-SiO3 was systemically characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller surface area analysis (BET). The results suggest that all Mgx-Cu1-x-SiO3 possess large surface areas, micropores and mesoporous structures composed of the agglomerates of small nanoparticles. They exhibit high CO2 adsorption capacity at 298.15 K under 1 bar, and that of Mg0.9-Cu0.1-SiO3 was the highest with the value of 16.73 cm3/g. The Freundlich isotherm model fits the CO2 adsorption isotherm well. Thermodynamic analysis indicates that the CO2 adsorption on Mg0.9-Cu0.1-SiO3 is exothermic (ΔH°<0), chaotic (ΔS°<0), and spontaneous (ΔG°<0). This work highlights the low-temperature adsorption behavior of silicate materials on CO2, which can provide some research basis for the utilization of silica in coal gangue.
[References]
  1. Yi C, Ma HQ, Zhu HG, Dong ZC, Su ZJ, Zhang YT, Chu Z, J. Build. Mater., 20, 134, 2017
  2. Li YJ, Xing Y, Zhang X, Yan XP, J. China Coal Soc., 38, 1215, 2013
  3. Yi C, Ma HQ, Chen HY, Wang JX, Shi J, Li ZH, Yu MK, Constr. Build. Mater., 187, 318, 2018
  4. Zhou CC, Liu GJ, Wu D, Fang T, Wang R, Fan X, Chemosphere, 95, 193, 2014
  5. Tang YB, Wang HE, Powder Technol., 323, 486, 2018
  6. Zhou L, Zhou HJ, Hu YX, Yan S, Yang JL, J. Environ. Manage., 234, 245, 2019
  7. Geng J, Zhou M, Zhang T, Wang W, Wang T, Zhou X, Wang X, Hou H, Mater. Struct., 50, 5, 2017
  8. Gao YJ, Huang HY, Tang WJ, Liu XY, Yang XY, Zhang JB, Microporous Mesoporous Mater., 217, 210, 2015
  9. Qian TT, Li JH, Adv. Powder Technol., 26(1), 98, 2015
  10. Xiao J, Li FC, Zhong QF, Bao HG, Wang BJ, Huang JD, Zhang YB, Hydrometallurgy, 155, 118, 2015
  11. Jamrunroj P, Wongsakulphasatch S, Maneedaeng A, Cheng CK, Assabumrungrat S, Powder Technol., 344, 208, 2019
  12. Rahmani O, Junin R, Tyrer M, Mohsin R, Energy Fuels, 28(9), 5953, 2014
  13. Sacco A, J. CO2 Util., 27, 22, 2018
  14. Kaliyavaradhan SK, Ling TC, J. CO2 Util., 20, 234, 2017
  15. Wang SX, Farrauto RJ, Karp S, Jeona JH, Erik T, J. CO2 Util., 27, 390, 2018
  16. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F, Chem. Rev., 117(14), 9804, 2017
  17. Wu HD, Gao L, Jin HG, Li S, Appl. Energy, 203, 571, 2017
  18. Creamer AE, Gao B, Environ. Sci. Technol., 50, 7276, 2016
  19. Li D, Zhou J, Zhang Z, Li L, Tian Y, Lu Y, Qiao Y, Li J, Wen L, Carbon, 114, 496, 2017
  20. Chen SJ, Zhu M, Fu Y, Huang YX, Tao ZC, Li WL, Appl. Energy, 191, 87, 2017
  21. Yoshihiro K, Marie S, Akira E, Microporous Mesoporous Mater., 219, 125, 2016
  22. Kim E, Hong S, Jang E, Lee JH, Kim JC, Choi N, Cho CH, et al., J. Mater. Chem. A, 5, 11246, 2017
  23. Belmabkhout Y, Guillerm V, Eddaoudi M, Chem. Eng. J., 296, 386, 2016
  24. Nandi S, Haldar S, Chakraborty D, Vaidhyanathan R, J. Mater. Chem. A, 5, 535, 2017
  25. Du H, Ma L, Liu XY, Zhang F, Yang XY, Wu Y, Zhang JB, Energy Fuels, 32(4), 5374, 2018
  26. Lee SC, Kim MJ, Kwon YM, Chae HJ, Cho MS, Park YK, Seo HM, Kim JC, Sep. Purif. Technol., 120, 214, 2019
  27. Essaki K, Kato M, Uemoto H, J. Mater. Sci., 21, 5017, 2005
  28. Li JJ, Hitch M, Power IM, Pan YY, Minerals, 8, 147, 2018
  29. Li JJ, Hitch M, Miner. Eng., 128, 69, 2018
  30. Hu YC, Liu WQ, Yang YD, Qu MY, Li HL, Chem. Eng. J., 359, 604, 2019
  31. Xu HL, Cheng WG, Jin XZ, Wang GX, Lu HX, Wang HL, Chen DL, Fan BB, Hou TC, Zhang R, Ind. Eng. Chem. Res., 52(5), 1886, 2013
  32. Seggiani M, Puccini M, Vitolo S, Int. J. Greenh. Gas. Control, 17, 25, 2013
  33. Zhang S, Zhang Q, Wang HY, Ni YH, Zhu ZB, Int. J. Hydrog. Energy, 39(31), 17913, 2014
  34. Ortiz-Landeros J, Gomez-Yanez C, Palacios-Romero LM, Lima E, Pfeiffer H, J. Phys. Chem. A, 116(12), 3163, 2012
  35. Gauer C, Heschel W, J. Mater. Sci., 41(8), 2405, 2006
  36. Chen Xiaoxiang, Xiong Zhuo, Qin Yadi, Gong Bengen, Tian Chong, Zhao Yongchun, Zhang Junying, Zheng Chuguang, Int. J. Hydrog. Energy, 41(30), 13077, 2016
  37. Wu Y, Du H, Gao YJ, Liu XY, Yang TY, Zhao L, Yue XQ, Zhang S, Zhang JB, Fuel, 258, 116192, 2019
  38. Gelb LD, Gubbins KE, Langmuir, 15(2), 305, 1999
  39. Freundlich MF, J. Phys. Chem., 57, 355, 1906
  40. Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438, 2009
  41. Moradi M, Karimzadeh R, Moosavi ES, Fuel, 217, 467, 2018
  42. Ye ZH, Chen d, Pan ZJ, Zhang GQ, Xia Y, Ding X, J. Nat. Gas. Sci. Eng., 31, 658, 2016
  43. Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302, 2017
  44. Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5, 349, 2014
  45. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. Res. Des., 134, 540, 2018
  46. Singh VK, Kumar EA, Mater. Today, 5, 23033, 2018
  47. Dietemann M, Baillon F, Espitalier F, Calvet R, Accart P, Confetto SD, Greenhill-Hooper M, Chem. Eng. J., 215-216, 658, 2013
  48. Oyama ST, Lee YK, J. Catal., 258(2), 393, 2008
  49. Wang HY, Wang YY, Bai X, Yang H, Han JP, Lun N, Qi YX, Bai YJ, RSC Adv., 6, 105771, 2016
  50. Zhang Y, Li YW, Dai YJ, Liu J, Xu YB, Ceram. Int., 44, 6626, 2018
  51. Zhang Y, Li YW, Dai YJ, Ceram. Int., 44, 21365, 2018
  52. Ren YP, Ding RY, Yue HR, Tang SY, Liu CJ, Zhao JB, Lin W, Liang B, Appl. Energy, 198, 250, 2017
  53. Nied D, Rasmussen KE, L'Hopital E, Skibsted J, Lothen B, Cem. Concr. Res., 79, 323, 2016
  54. Borchert H, Shevehenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H, Langmuir, 21(5), 1931, 2005
  55. Li T, Senesi AJ, Lee B, Chem. Rev., 116(18), 11128, 2016
  56. Liu HH, Zhang HL, Xu HB, Lou TP, Sui ZT, Zhang Y, Nanoscale, 10, 5246, 2018
  57. Liu HH, Zhang HL, Hu YY, Xu HB, Lou TP, Sui ZT, Zhang Y, J. Alloy. Compd., 778, 803, 2019
  58. Roselin LS, Chiu HW, J. Saudi. Chem. So., 22, 692, 2018
  59. Yuan JJ, Zhu PX, Noda D, Jin RH, Beilstein J. Nanotechnol., 4, 793, 2013
  60. Rahmani S, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 20(4), 1346, 2014
  61. Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M, J. Mater. Chem. A, 4, 4808, 2016
  62. Ghods B, Rezaei M, Meshkani F, Ceram. Int., 42, 6883, 2016
  63. Klinthong W, Huang CH, Tan CS, Ind. Eng. Chem. Res., 55(22), 6481, 2016
  64. Liu XY, Yang XY, Du H, Wu Y, Zhang XS, Zhang JB, Powder Technol., 333, 138, 2018
  65. Mason JA, Sumida K, Herm ZR, Krishna R, Long JR, Energy Environ. Sci., 4, 3030, 2011
  66. Du YH, Du ZJ, Zou W, Li HQ, Mi JG, Zhang C, J. Colloid Interface Sci., 409, 123, 2013
  67. Lopez-Aranguren P, Builes S, Fraile J, Vega LF, Domingo C, Ind. Eng. Chem. Res., 53(40), 15611, 2014
  68. Zheng YN, Li QZ, Yuan CC, Tao QL, Zhao Y, Zhang GY, Liu JF, Qi G, Fuel, 230, 172, 2018
  69. Chen L, Zuo L, Jiang ZX, Jiang S, Liu KY, Tang JQ, Zhang LC, Chem. Eng. J., 361, 559, 2019
  70. Schindler BJ, LeVan MD, Carbon, 46, 644, 2008
  71. Deng H, Yi HH, Tang XL, Yu QF, Ning P, Yang LP, Chem. Eng. J., 188, 77, 2012
  72. Hu HY, Zhang TW, Wiggins-Camacho JD, Ellis GS, Lewan MD, Zhang XL, Mar. Pet. Geol., 59, 114, 2015
  73. Zhang B, Luan LY, Gao RT, Li F, Li YJ, Wu T, Colloids Surf. A: Physicochem. Eng. Asp., 50, 399, 2017