Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1743-1750, 2020
Efficient conversion of glucosamine to ethyl levulinate catalyzed by methanesulfonic acid
This study is focused on the possibility of using crustacean waste shells for sustainable biofuels and chemical production. We investigated the synthesis of ethyl levulinate (EL) from glucosamine by the methanesulfonic acidcatalyzed hydrothermal reaction using Box-Behnken design. In the ethyl levulinate synthesis, higher water content highly inhibited the formation of EL. Among the reaction factors, reaction temperature, catalyst concentration, and reaction time positively affected the outcome more than substrate concentration. The optimized reaction conditions were 200 °C reaction temperature, 60 g/L substrate concentration, 0.75M catalyst concentration, and 44.9min. Under these conditions, a 22.76mol% EL yield was achieved. These results suggest that crustacean waste shells can be used for renewable feedstocks to produce valuable chemicals and biofuels.
[References]
  1. Hoekman SK, Renew. Energy, 34(1), 14, 2009
  2. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, Biorefineries-industrial processes and products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 139 (2006).
  3. Werpy T, Petersen G, Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas, National Renewable Energy Lab., Golden, CO (2004).
  4. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342, 2007
  5. Ra CH, Sirisuk P, Jung JH, Jeong GT, Kim SK, Bioprocess. Biosyst. Eng., 41, 457, 2018
  6. Park MR, Kim SK, Jeong GT, Biotechnol. Bioprocess Eng., 23, 302, 2018
  7. Meinita MDN, Marhaeni B, Jeong GT, Hong YK, J. Appl. Phycol., 31(4), 2507, 2019
  8. Inokuma K, Takano M, Hoshino K, Biochem. Eng. J., 72, 24, 2013
  9. Rinaudo M, Prog. Polym. Sci., 31, 603, 2006
  10. Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384, 2013
  11. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290, 2018
  12. Kim HS, Kim SK, Jeong GT, RSC Adv., 8, 3198, 2018
  13. Coh BY, Lee JW, Kim ES, Park YS, J. Chitin Chitosan, 8(3), 127, 2003
  14. Hulsey MJ, Green Energy Environ., 3, 318, 2018
  15. Tiong YW, Yap CL, Gan S, Yap WSP, Ind. Crop. Prod., 128, 221, 2019
  16. Quereshi S, Ahmad E, Pant KK, Dutta S, Catal. Today, 291, 187, 2017
  17. Chang C, Xu GZ, Jiang XX, Bioresour. Technol., 121, 93, 2012
  18. Peng LC, Lin L, Zhang JH, Shi JB, Liu SJ, Appl. Catal. A: Gen., 397(1-2), 259, 2011
  19. Ahmad E, Alama MI, Pant KK, Haider MA, Green Chem., 18, 4804, 2016
  20. Guan Q, Lei T, Wang Z, Xu H, Lin L, Chen G, Li X, Li Z, Ind. Crop. Prod., 113, 150, 2018
  21. Bozell JJ, Petersen GR, Green Chem., 12(4), 539, 2010
  22. Popova M, Shestakova P, Lazarova H, Dimitrov M, Kovacheva D, Szegedi A, Mali G, Dasireddy V, Likozar B, Wilde N, Glaser R, Appl. Catal. A: Gen., 560, 119, 2018
  23. Pasquale G, Vazquez P, Romanelli G, Baronetti G, Catal. Commun., 18, 115, 2012
  24. Zhang Z, Dong K, Zhao ZK, ChemSusChem, 4, 112, 2011
  25. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115, 2018
  26. Miller GL, Anal. Chem., 31, 426, 1959
  27. Xu G, Chang C, Fang S, Ma X, Renew. Energy, 78, 583, 2015
  28. Rataboul F, Essayem N, Ind. Eng. Chem. Res., 50(2), 799, 2011
  29. Mascal M, Nikitin EB, ChemSusChem, 3, 1349, 2010
  30. De S, Dutta S, Saha B, Green Chem., 13, 2859, 2011
  31. Zhao G, Liu M, Xia X, Li L, Xu B, Molecules, 24, 1881, 2019
  32. Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480, 2012