Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1732-1742, 2020
Effect of molecular weight of regenerated silk fibroin on silk-based spheres for drug delivery
Silk fibroin presents a good advantage as a drug carrier for drug delivery, due to the excellent biocompatibility, biodegradability and tunable drug loading and release properties. In this work, we constructed silk spheres by phase separation of the regenerated silk fibroin (RSF) solutions with different MW and polyvinyl alcohol; and it was revealed that MW of RSF can affect the structure, size, surface potential and drug loading and release efficiency of silk spheres. Silk spheres prepared from high MW of RSF were found to load more macromolecular drug with negative charge compared to middle and low MW of RSF. However, for the positive charge and low MW drug, the silk spheres prepared from low MW of RSF could present a high loading efficiency compared to other carriers. Finally, a positive drug with low MW, streptomycin was encapsulated in silk spheres prepared from low MW of RSF, and displayed a long bactericidal and bacteriostatic effect compared to bared streptomycin solution. The results obtained provide guidelines for the modification and options of drug transport vehicles for more efficient drug delivery and utilization through a simple, rapidly constructed, applicable and low-cost drug carrier.
[References]
  1. rockwood D, Preda R, Yucel T, Wang X, Lovett M, Kaplan D, Nat. Protoc., 6, 1612, 2011
  2. Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC, J. Control. Release, 321, 324, 2020
  3. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL, Biomaterials, 31, 1025, 2010
  4. Liu Y, Huang L, Yuan W, Zhang D, Gu Y, Huang J, Murphy S, J. Biomed. Mater. Res. Part A, 108, 1760, 2020
  5. Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL, ACS Appl. Mater. Interfaces, 8, 24463, 2016
  6. Zhang Q, Yu H, Barbiero M, Wang B, Gu M, Light: Science & Applications, 8, 42 (2019).
  7. Jiang JP, Liu XP, Zhao F, Zhu X, Li XY, Niu XG, Yao ZT, Neural Regen. Res., 15, 1961, 2020
  8. Han YY, Yu SH, Liu LC, Zhao SJ, Yang TX, Yang YJ, Fang YM, Lv SS, Mol. Catal., 457, 24, 2018
  9. Srisuwan Y, Srihanam P, Baimark Y, J. Macromol. Sci.-Pure Appl. Chem., 46, 521, 2009
  10. Liu L, Busuttil K, Zhang S, Yang YL, Wang C, Besenbacher F, Dong MD, PCCP, 13, 17435, 2011
  11. Liu L, Klausen LH, Dong MD, Nano Today, 23, 40, 2018
  12. Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G, Angew. Chem.-Int. Edit., 57, 7878, 2018
  13. Liu L, Li Y, Xia D, Bortolini C, Zhang S, Yang Y, Pedersen JS, Wang C, Besenbacher F, Dong M, Nanoscale, 7, 2250, 2015
  14. Vepari C, Kaplan DL, Prog. Polym. Sci., 32, 991, 2007
  15. Kwon KJ, Seok H, Appl. Sci., 8, 1214, 2018
  16. Kapoor S, Kundu SC, Acta Biomater., 31, 17, 2016
  17. Pham DT, Saelim N, Tiyaboonchai W, Drug Deliv. Transl. Res., 10, 1, 2019
  18. Wu J, Wang J, Zhang J, Zheng Z, Kaplan DL, Li G, Wang X, ACS Biomater. Sci. Eng., 4, 3885, 2018
  19. Shi P, Goh JCH, Int. J. Pharm., 420, 282, 2011
  20. Wu J, Zheng Z, Li G, Kaplan DL, Wang X, Acta Biomater., 39, 156, 2016
  21. Mitropoulos AN, Perotto G, Kim S, Marelli B, Kaplan DL, Omenetto FG, Adv. Mater., 26(7), 1105, 2014
  22. Champion JA, Katare YK, Mitragotri S, J. Control. Release, 121, 3, 2007
  23. Michaela C, Apoorva S, Masoud H, Fedosov DA, Samir M, Anirban SG, Nanoscale, 10, 15350, 2018
  24. Ta HT, Truong NP, Whittaker AK, Davis TP, Peter K, Expert Opin. Drug Deliv., 15, 33, 2018
  25. Mehrabadi M, Ku DN, Aidun CK, Phys. Rev. E, 93, 023109, 2016
  26. Hoet PHM, Bruske-Hohlfeld I, Salata OV, J. Nanobiotechnol., 2, 12, 2004
  27. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM, J. Control. Release, 125, 193, 2008
  28. Tabatabai AP, Partlow BP, Raia NR, Kaplan DL, Blair DL, Langmuir, 34(50), 15383, 2018
  29. Kim HH, Song DW, Kim MJ, Ryu SJ, Um IC, Ki CS, Park YH, Polymer, 90, 26, 2016
  30. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL, J. Biomed. Mater. Res. B Appl. Biomater., 99B, 89, 2011
  31. Wu JB, Zheng ZZ, Li G, Kaplan DL, Wang XQ, Acta Biomater., 39, 156, 2016
  32. Wang J, Zhang S, Xing T, Kundu B, Li M, Kundu SC, Lu S, Int. J. Biol. Macromol., 79, 316, 2015
  33. Wang J, Yin Z, Xiang X, Kundu SC, Mo X, Lu S, Int. J. Mol. Sci., 17, 2012, 2016
  34. Cheerarot O, Baimark Y, E-Polymers, 15, 67, 2015
  35. Kim SY, Naskar D, Kundu SC, Bishop DP, Doble PA, Boddy AV, Chan HK, Wall IB, Chrzanowski W, Sci. Rep., 5, 11878, 2015
  36. Breslauer DN, Muller SJ, Lee LP, Biomacromolecules, 11(3), 643, 2010
  37. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR, Biomaterials, 31, 4583, 2010
  38. Wenk E, Wandrey A, Merkle H, Meinel L, J. Control. Release, 132, 26, 2008
  39. Pham DT, Saelim N, Tiyaboonchai W, Colloids Surf. B: Biointerfaces, 181, 705, 2019
  40. Pham DT, Tiyaboonchai W, Drug Deliv., 27, 431, 2020
  41. Alves MH, Jensen BEB, Smith AAA, Zelikin AN, Macromol. Biosci., 11, 1293, 2011
  42. Baker MI, Walsh SP, Schwartz Z, Boyan BD, J. Biomed. Mater. Res. B Appl. Biomater., 100B, 1451, 2012
  43. Shi PJ, Goh JCH, Powder Technol., 215-216, 85, 2012
  44. Baimark Y, Srihanam P, Srisuwan Y, Phinyocheep P, J. Appl. Polym. Sci., 118(2), 1127, 2010
  45. Chen M, Shao Z, Chen X, J. Biomed. Mater. Res. Part A, 100A, 203, 2012
  46. Arifin DY, Lee LY, Wang CH, Adv. Drug Deliv. Rev., 58, 1274, 2006
  47. Li YJ, University S, Supervision FQ, Center T, Agriculture MO, Food Industry, 357, 1565, 2008
  48. Tanaka T, Suzuki M, Kuranuki N, Tanigami T, Yamaura K, Polym. Int., 42, 107, 1997
  49. Tanaka T, Tanigami T, Yamaura K, Polym. Int., 45, 175, 1998
  50. Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR, Biophys. Chem., 89, 25, 2001
  51. Sonoyama M, Nakano T, Appl. Spectrosc., 54, 968, 2016
  52. Hu X, Kaplan D, Cebe P, Macromolecules, 39(18), 6161, 2006
  53. Kaszuba M, Corbett J, Watson FM, Jones A, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 4439, 2010
  54. Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V, J. Pharm. Sci., 93, 1804, 2004
  55. Sawant SB, Joshi JB, Sikdar SK, Biotechnol. Tech., 2, 41, 1988
  56. Gunduz U, Bioseparation, 9, 277, 2000
  57. Yoshimizu H, Asakura T, J. Appl. Polym. Sci., 40, 1745, 1990
  58. Siepmann J, Peppas NA, Adv. Drug Deliv. Rev., 48, 139, 2001
  59. Siepmann J, Siepmann F, Int. J. Pharm., 364, 328, 2008
  60. Zhang J, Feng YH, Mi JL, Shen YT, Tu ZG, Liu L, J. Hazard. Mater., 342, 121, 2018
  61. Chen Q, Zhang L, Feng Y, Shi F, Wang Y, Wang P, Liu L, J. Mat. Chem. B, 6, 7643, 2018
  62. Feng Y, Liu L, Zhang J, Aslan H, Dong M, J. Mat. Chem. B, 5, 8631, 2017
  63. Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L, ACS Appl. Bio Mater., 2, 747, 2019
  64. Mcenery ET, Sweany HC, Turner GC, Ill. Med. J., 4, 15, 1950
  65. Omar MA, Hammad MA, Nagy DM, Aly AA, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 136, 1760, 2015
  66. Savidge TA, Biotechnology of industrial antibiotics, Marcel Dekker Inc., New York (1984).
  67. Nori L, ManiKiran SS, Rao N, Int. J. PharmTech Res., 2, 2506, 2010