Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1709-1716, 2020
Formation of CaCO3 from calcium sources with different anions in single process of CO2 capture-mineralization
The single process CO2 capture-mineralization approach integrates methods of CO2 absorption using aqueous solvents and mineral carbonation technology to not only remove carbon dioxide quickly, but also to simultaneously produce precipitated calcium carbonate (PCC). To develop a more sustainable process, it is important to extract calcium from inexpensive raw materials such as industrial by-products. The extractant has a significant effect on the quality of the calcium carbonate produced because it determines the anion paired with the calcium cation. In this work, several calcium sources with different anions (Propionate, Acetate, Nitrate and Chloride) were applied in the single process CO2 capture-mineralization method, and their influence on the polymorph of the obtained CaCO3 was investigated. The CaCO3 produced with inorganic calcium sources predominantly exhibited a calcite structure, while the CaCO3 produced with organic calcium sources had a structure in which vaterite and calcite coexist. This result was in good agreement with our DFT calculations, which indicated the adsorption energy of the organic anions (Propionate and Acetate) were lower than the inorganic anions on the surface of vaterite. Except for chloride with its non-polar nature, in most cases, there was a strong correlation between the polymorph and the adsorption energy calculated for each surface. A mechanism for the polymorph CaCO3 formation in our single process CO2 capture-mineralization method was proposed after observing crystal formation at low concentration.
[References]
  1. Jarvis SM, Samsatli S, Renew. Sust. Energ. Rev., 85, 46, 2018
  2. Cuellar-Franca RM, Azapagic A, J. CO2 Util., 9, 82, 2015
  3. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM, Chem. Soc. Rev., 43, 8049, 2014
  4. Bhaduri GA, Siller L, Catal. Sci. Technol., 3, 1234, 2013
  5. Zevenhoven R, Teir S, Eloneva S, Proc. 19th Int. Conf. Efficiency Costs, Optimization, Simulation and Environmental Impact of Energy Systems, 33, 1661 (2006).
  6. Lee SM, Lee SH, Jeong SK, Youn MH, Nguyen DD, Chang SW, Kim SS, J. Ind. Eng. Chem., 53, 233, 2017
  7. Sun Y, Yao MS, Zhang JP, Yang G, Chem. Eng. J., 173(2), 437, 2011
  8. Zhao Q, Liu CJ, Jiang MF, Saxen H, Zevenhoven R, Miner. Eng., 79, 116, 2015
  9. Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36, 2007
  10. Park AHA, Fan LS, Chem. Eng. Sci., 59(22-23), 5241, 2004
  11. Ibrahim M, El-Naas M, Benamor A, Al-Sobhi S, Zhang Z, Processes, 7, 115, 2019
  12. Alamdari A, Alamdari A, Mowla D, J. Ind. Eng. Chem., 20(5), 3480, 2014
  13. Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 43(24), 7880, 2004
  14. Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298, 2010
  15. Vinoba M, Bhagiyalakshmi M, Choi SY, Park KT, Kim HJ, Jeong SK, J. Phys. Chem. C, 118, 17556, 2014
  16. Arti M, Youn MH, Park KT, Kim HJ, Kim YE, Jeong SK, Energy Fuels, 31(1), 763, 2017
  17. Murnandari A, Kang J, Youn MH, Park KT, Kim HJ, Kang SP, Jeong SK, Korean J. Chem. Eng., 34(3), 935, 2017
  18. Vinoba M, Bhagiyalakshmi M, Grace AN, Chu DH, Nam SC, Yoon Y, Yoon SH, Jeong SK, Langmuir, 29(50), 15655, 2013
  19. Kang JM, Murnandari A, Youn MH, Lee W, Park KT, Kim YE, Kim HJ, Kang SP, Lee JH, Jeong SK, Chem. Eng. J., 335, 338, 2018
  20. Bao WJ, Li HQ, Zhang Y, Ind. Eng. Chem. Res., 49(5), 2055, 2010
  21. Kresse G, Joubert D, Phys. Rev. B, 59, 1758, 1999
  22. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169, 1996
  23. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 78, 1396, 1997
  24. Liang Y, Lea AS, Baer DR, Engelhard MH, Surf. Sci., 351, 172, 1996
  25. Bano AM, Rodger PM, Quigley D, Langmuir, 30(25), 7513, 2014
  26. Grimme S, Antony J, Ehrlich S, Krieg H, J. Chem. Phys., 132, 154104, 2010
  27. Stowe HM, Vilciauskas L, Paek E, Hwang GS, Phys. Chem. Chem. Phys., 17, 29184, 2015
  28. Andreassen JP, J. Cryst. Growth, 274(1-2), 256, 2005
  29. Balmain J, Hannoyer B, Lopez E, J. Biomed. Mater. Res., 48, 342, 1999
  30. Maslen EN, Streltsov VA, Streltsova NR, Acta Crystallogr. Sect. B-Struct. Sci., 49, 636, 1993
  31. Duffy DM, Harding JH, J. Mater. Chem., 12, 3419, 2002
  32. de Leeuw NH, Parker SC, J. Phys. Chem. B, 102(16), 2914, 1998
  33. Lardge JS, Duffy DM, Gillan MJ, J. Phys. Chem. C, 113, 7207, 2009
  34. Ataman E, Andersson MP, Ceccato M, Bovet N, Stipp SLS, J. Phys. Chem. C, 120, 16586, 2016
  35. Okhrimenko DV, Nissenbaum J, Andersson MP, Olsson MHM, Stipp SLS, Langmuir, 29(35), 11062, 2013
  36. Kralj D, Brecevic L, Nielsen AE, J. Cryst. Growth, 104, 793, 1990
  37. Kralj D, Brecevic L, Nielsen AE, J. Cryst. Growth, 143, 269, 1994
  38. Trushina DB, Bukreeva V, Kovalchuk MV, Antipina MN, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 45, 644, 2015