Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1690-1698, 2020
Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas
Co-based catalysts were developed for the production of high-calorie synthetic natural gas. The Co reduction in Al2O3- and SiO2-supported catalysts prepared with different Co loading, and their catalytic properties for highcalorie methanation were investigated. The CO conversion of the Co/SiO2 catalysts was superior to that of the Co/ Al2O3 with the same Co loading, due to their better reducibility at 400 °C. The activities of both the Al2O3 and SiO2- supported catalysts increased with Co loading, while the growth of hydrocarbon chains decreased as the Co loading increased. As the reduction temperature increased, crystallite size of Co increased in 10 Co/SiO2, resulting in decrease of CO conversion and increase of C2+ selectivity. The highest CO conversion (98.7%) was obtained over 10Co/SiO2 reduced at 400 °C. Moreover, the heating value of the product gas (10,405 kcal/Nm3) exceeded the standard heating value without requiring a high reduction temperature (700 °C) or a noble metal (Ru).
[References]
  1. Davis SJ, Caldeira K, Matthews HD, Science, 329(5997), 1330, 2010
  2. Jo SB, Chae HJ, Kim TY, Lee CH, Oh JU, Kang SH, Kim JW, Jeong M, Lee SC, Kim JC, Catal. Commun., 117, 74, 2018
  3. Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220, 2015
  4. Lee YH, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 425, 190, 2016
  5. Czekaj L, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A, Appl. Catal. A: Gen., 329, 68, 2007
  6. Guo CL, Wu YY, Qin HY, Zhang JL, Fuel Process. Technol., 124, 61, 2014
  7. Hu DC, Gao JJ, Ping Y, Jia LH, Gunawan P, Zhong ZY, Xu GW, Gu FN, Su FB, Ind. Eng. Chem. Res., 51(13), 4875, 2012
  8. Kester KB, Zagli E, Falconer JL, Appl. Catal., 22, 311, 1986
  9. Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR, J. Phys. Chem. B, 109(6), 2432, 2005
  10. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763, 2010
  11. Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276, 2016
  12. Davis BH, Ind. Eng. Chem. Res., 46(26), 8938, 2007
  13. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP, J. Am. Chem. Soc., 131(20), 7197, 2009
  14. Wang ZJ, Yan Z, Liu CJ, Goodman, ChemCatChem, 3, 551, 2011
  15. Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW, J. Catal., 342, 1, 2016
  16. Inui T, Sakamoto A, Takeguchi T, Ishigaki Y, Ind. Eng. Chem. Res., 28, 427, 1989
  17. Ishigaki Y, Uba M, Nishida S, Inui T, Appl. Catal., 47, 197, 1989
  18. Oh JH, Bae JW, Park SJ, Khanna PK, Jun KW, Catal. Lett., 130(3-4), 403, 2009
  19. Park KS, Saravanan K, Park SJ, Lee YJ, Jeon KW, Bae JW, Catal. Sci. Technol., 7, 4079, 2017
  20. Reuel RC, Bartholomew CH, J. Catal., 85, 78, 1984
  21. Salazar-Contreras HG, Martinez-Hernandez A, Boix AA, Fuentes GA, Torres-Garcia E, Appl. Catal. B: Environ., 244, 414, 2019
  22. Zhang JL, Chen JG, Ren J, Sun YH, Appl. Catal. A: Gen., 243(1), 121, 2003
  23. Zhang Y, Nagamori S, Hinchiranan S, Vitidsant T, Tsubaki N, Energy Fuels, 20(2), 417, 2006
  24. Armstrong GT, Jobe TL, Heating values of natural gas and its components, U.S. Department of Commerce, Washington, D.C. (1982).
  25. Galvis HMT, de Jong KP, ACS Catal., 3, 2130, 2013
  26. Li WH, Nie XW, Jiang X, Zhang AF, Ding FS, Liu M, Liu ZM, Guo XW, Song CS, Appl. Catal. B: Environ., 220, 397, 2018
  27. Ullah S, Lovell EC, Wong RJ, Tan TH, Scott J, Amal R, ACS Sustain. Chem. Eng., 8, 5056, 2020
  28. Ma WP, Ding YJ, Lin LW, Ind. Eng. Chem. Res., 43(10), 2391, 2004
  29. Khodakov AY, Bechara R, Griboval-Constant A, Appl. Catal. A: Gen., 254(2), 273, 2003
  30. Martinez A, Lopez C, Marquez F, Diaz I, J. Catal., 220(2), 486, 2003
  31. Medina C, Garcia R, Reyes P, Fierro JLG, Escalona N, Appl. Catal. A: Gen., 373(1-2), 71, 2010