Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1680-1689, 2020
Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method
This study explored the potential of In2O3/ZrO2 catalyst for direct CO2 hydrogenation to methanol. Despite the excellent properties proven by density functional theory (DFT) studies, the experimental works on this catalyst are still very limited. In this study, In2O3/ZrO2 catalysts were synthesized via wetness impregnation (In2O3/ZrO2(WI)), citric acid-based sol-gel method (In2O3/ZrO2(SG)) and deposition-precipitation assisted by urea hydrolysis (In2O3/ZrO2(UH)). Results indicated the impressive effect of preparation method on the catalytic activity where In2O3/ZrO2(SG) presented superior catalytic performance, followed by In2O3/ZrO2(UH) and In2O3/ZrO2(WI), with the CO2 conversion of 16.23%, methanol selectivity of 94.39% and STY of 0.95 gmethanol/gcat·h. To unravel the structure-function relationship, several characterization techniques including XRD, HR-TEM, SEM-EDX, H2-TPR, CO2-TPD, N2 adsorption-desorption isotherm and XPS were implemented to analyze the developed catalysts. The analyses indicated that the excellent performance of In2O3/ZrO2 (SG) was due to its smaller crystallite size, strong metal-support interaction, high reducibility and high concentration of basic sites and oxygen vacancies on the catalyst surface. Time-on-stream stability test showed that In2O3/ZrO2 (SG) catalyst could sustain its high activity and selectivity within 100 h, signifying the high potential of this catalyst for direct hydrogenation of CO2 to methanol with minimum side reactions and deactivation.
[References]
  1. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB, Chem. Eng. Res. Des., 92(11), 2557, 2014
  2. Temvuttirojn C, Poo-arporn Y, Chanlek N, Cheng CK, Chong CC, Limtrakul J, Witoon T, Ind. Eng. Chem. Res., 59(13), 5525, 2020
  3. Hertrich MH, Beller M, Springer International Publishing, Cham, Switzerland (2018).
  4. Zhang Y, Zhong L, Wang H, Gao P, Li X, Xiao S, Ding G, Wei W, Sun Y, J. CO2 Util., 15, 72, 2016
  5. Ye J, Liu C, Mei D, Ge Q, ACS Catal., 3, 1296, 2013
  6. Sun K, Fan Z, Ye J, Yan J, Ge Q, Li Y, He W, Yang W, Liu CJ, J. CO2 Util., 12, 1, 2015
  7. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J, Angew. Chem.-Int. Edit., 55, 6261, 2016
  8. Koh MK, Wong YJ, Chai SP, Mohamed AR, J. Ind. Eng. Chem., 62, 156, 2018
  9. Zhang MH, Dou MB, Yu YZ, Appl. Surf. Sci., 433, 780, 2018
  10. Liu M, Yi Y, Wang L, Guo H, Bogaerts A, Catalysts, 9, 275, 2019
  11. Dou M, Zhang M, Chen Y, Yu Y, Surf. Sci., 672-673, 7, 2081
  12. Numpilai T, Kidkhunthod P, Cheng CK, Wattanakit C, Chareonpanich M, Limtrakul J, Witoon T, Catal. Today, in press (2020).
  13. Jung KT, Bell AT, Catal. Lett., 80(1-2), 63, 2002
  14. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C, ACS Catal., 2, 1667, 2012
  15. Silaghi MC, Comas-Vives A, Coperet C, ACS Catal., 6, 4501, 2016
  16. Karelovic A, Galdames G, Medina JC, Yevenes C, Barra Y, Jimenez R, J. Catal., 369, 415, 2019
  17. Akbari B, Tavandashti MP, Zandrahimi M, Iran. J. Mater. Sci. Eng., 8, 48, 2011
  18. Jaouen F, Charreteur F, Dodelet JP, Non-Noble Catal. Oxyg. Reduct. PEMFC, 176 (2005).
  19. Allam D, Bennici S, Limousy L, Hocine S, Comptes Rendus Chim., 2-3, 227, 2019
  20. Ouyang B, Tan W, Liu B, Catal. Commun., 95, 36, 2017
  21. Decolatti HP, Martinez-Hernandez A, Gutierrez LB, Fuentes GA, Zamaro JM, Microporous Mesoporous Mater., 145, 41, 2011
  22. Wang J, Zhang A, Jiang X, Song C, Guo X, J. CO2 Util., 27, 81, 2018
  23. Li S, Wang Y, Yang B, Guo L, Appl. Catal. A: Gen., 571, 51, 2018
  24. Rui N, Wang ZY, Sun KH, Ye JY, Ge QF, Liu CJ, Appl. Catal. B: Environ., 218, 488, 2017
  25. Le-Phuc N, Tran TV, Thuy PN, Nguyen LH, Trinh TT, React. Kinet. Mech. Catal., 124, 171, 2018
  26. Wang G, Mao DS, Guo XM, Yu J, Int. J. Hydrog. Energy, 44(8), 4197, 2019
  27. Gao P, Yang H, Zhang L, Zhang C, Zhong L, Wang H, Wei W, Sun Y, J. CO2 Util., 16, 32, 2016
  28. Ezeh CI, Yang X, He J, Snape C, Cheng XM, Ultrason. Sonochem., 42, 48, 2018
  29. Akkharaphatthawon N, Chanlek N, Cheng CK, Chareonpanich M, Limtrakul J, Witoon T, Appl. Surf. Sci., 489, 278, 2019
  30. Ud I, Shaharun MS, Naeem A, Tasleem S, Ra M, Catal. Today, 21, 145, 2017
  31. Krishnan RR, Kavitha VS, Kumar SMC, Gopchandran KG, Pillai MVP, Mater. Sci. Semicond. Process, 93, 134, 2019
  32. Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H, Nat. Commun., 10, 1166, 2019
  33. Wang W, Qu Z, Song L, Fu Q, J. Energy Chem., 40, 22, 2020
  34. Samson K, Sliwa M, Socha RP, Gora-Marek K, Mucha D, et al., ACS Catal., 4, 3730, 2014
  35. Wang W, Qu Z, Song L, Fu Q, J. Energy Chem., 40, 22, 2020
  36. Li K, Chen JG, ACS Catal., 9, 7480, 2019
  37. Chary KVR, Sagar GV, Srikanth CS, Rao VV, J. Phys. Chem. B, 111(3), 543, 2007
  38. Rajaeiyan A, Bagheri-Mohagheghi MM, Adv. Mater. Sci. Eng., 1, 176, 2013
  39. Davar F, Hassankhani A, Loghman-Estarki MR, Ceram. Int., 39, 2933, 2013
  40. Wang G, Mao DS, Guo XM, Yu J, Appl. Surf. Sci., 456, 403, 2018
  41. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J, Chem. Eng. J., 316, 692, 2017
  42. Bavykina A, Yarulina I, Al Abdulghani AJ, Gevers L, et al., ACS Catal., 8, 6910, 2019
  43. Hengne AM, Samal AK, Enakonda LR, Harb M, Gevers LE, et al., ACS Omega, 3, 3688, 2018
  44. Yao LB, Shen XC, Pan YB, Peng ZM, J. Catal., 372, 74, 2019
  45. Chou C, Lobo R, Appl. Catal. A: Gen., 583, 117, 2019
  46. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J, Chem. Eng. J., 334, 1781, 2018