Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1669-1679, 2020
Electrooxidation of single-carbon molecules by nanostructured Pd-decorated spongy ceria
Solution combustion synthesis is proposed to fabricate spongy ceria by using two different fuels for combustion: glycine and urea. As-prepared samples are labeled as SCOGl and SCOUr. The acid-base properties of the cavities and surfaces of specimens are determined by measuring the pH of zero charges. Both SCOGl and SCOUr powders are decorated by the nanostructured Pd (NSPd) by the wetness incorporation. The NSPd-SCOGl and NSPd-SCOUr represent the high mass current density than NSPd as non-supported palladium for the electrooxidation of single-carbon molecules: methanol, formaldehyde and formic acid. The results show that the NSPd-SCOGl and NSPd-SCOUr are exceptional heterogeneous catalysts. The SCO as the support with porous structural network has been affected considerably on the electrochemical surface area, dispersion, and durability of NSPd. On the other hand, it can be effective for removing the poisoning species of the electrooxidation of single-carbon molecules on NSPd through the lattice oxygen, and the activation of an oxidation-reduction cycle between the high and low chemical valences of cerium, leading to improve the electrocatalytic efficiency of NSPd. Finally, it is confirmed the conversion of methanol to formaldehyde, and then to formic acid during electrooxidation by using cyclic voltammetry studies.
[References]
  1. Raoof JB, Ojani R, Hosseini SR, Microchim. Acta, 180, 879, 2013
  2. Abrishamkar M, Barootkoob M, Int. J. Hydrog. Energy, 42(37), 23821, 2017
  3. Feng L, Chang J, Jiang K, Xue H, Liu C, Cai WB, Xing W, Zhang J, Nano Energy, 30, 355, 2016
  4. Raoof JB, Omrani A, Ojani R, Monfared F, J. Electroanal. Chem., 633(1), 153, 2009
  5. Prasanna D, Selvaraj V, Korean J. Chem. Eng., 33(4), 1489, 2016
  6. Sheng GQ, Chen JH, Ye HQ, Hu ZX, Fu XZ, Sun R, Huang WX, Wong CP, J. Colloid Interface Sci., 522, 264, 2018
  7. Hepel M, Kumarihamy I, Zhong CJ, Electrochem. Commun., 8, 1439, 2006
  8. Zhang YM, Liu Y, Liu WH, Li XY, Mao LQ, Appl. Surf. Sci., 407, 64, 2017
  9. Sebastian D, Nieto-Monge MJ, Perez-Rodriguez S, Pastor E, Lazaro MJ, Energies, 11, 831, 2018
  10. Wang G, Ye K, Shao JQ, Zhang YY, Zhu K, Cheng K, Yan J, Wang GL, Cao DX, Int. J. Hydrog. Energy, 43(19), 9316, 2018
  11. Kuppan B, Selvam P, Pro. Nat. Sci. Mater., 22, 616, 2012
  12. Zhang FB, Jiang JX, Ni Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 190, 90, 2014
  13. Zhao S, Yin H, Du L, Yin G, Tang Z, Liu S, J. Mater. Chem. A, 2, 3719, 2014
  14. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9, 2005
  15. Zahed M, Afarani MS, Mohebbi-Kalhori D, Appl. Phys. A-Mater. Sci. Process., 120, 215, 2015
  16. Kulesza PJ, Grzybowska B, Malik MA, Chojak M, Miecznikowski K, J. Electroanal. Chem., 512(1-2), 110, 2001
  17. Macak JM, Barczuk PJ, Tsuchiya H, Nowakowska MZ, Ghicov A, Chojak M, Bauer S, Virtanen S, Kulesza PJ, Schmuki P, Electrochem. Commun., 7, 1417, 2005
  18. Saha MS, Li R, Sun X, Electrochem. Commun., 9, 2229, 2007
  19. Hogue MA, Higgins DC, Hassan FM, Choi JY, Pritzker MD, Chen ZW, Electrochim. Acta, 121, 421, 2014
  20. Chai GS, Shin IS, Yu JS, Adv. Mater., 16(22), 2057, 2004
  21. Cui Z, Yang M, Di-Salvo FJ, ACS Nano, 8, 6106, 2014
  22. Zhan J, Cai M, Zhang CF, Wang C, Electrochim. Acta, 154, 70, 2015
  23. Bai BY, Li JH, Hao JM, Appl. Catal. B: Environ., 164, 241, 2015
  24. Xie X, Li Y, Liu ZQ, Haruta M, Shen W, Nature, 458, 746, 2009
  25. Hu LH, Peng Q, Li YD, J. Am. Chem. Soc., 130(48), 16136, 2008
  26. Wu JB, Li ZG, Huang XH, Lin Y, J. Power Sources, 224, 1, 2013
  27. Delimaris D, Ioannides T, Appl. Catal. B: Environ., 84(1-2), 303, 2008
  28. Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem.-Int. Edit., 44, 4066, 2005
  29. Ma HY, Zeng L, Tian H, Li D, Wang X, Li XY, Gong JL, Appl. Catal. B: Environ., 181, 321, 2016
  30. Hassanzadeh-Tabrizi SA, Mazaheri M, Aminzare M, Sadrnezhaad SK, J. Alloy. Compd., 491, 499, 2010
  31. Mokkelbost T, Kaus I, Grande T, Einarsrud MA, Chem. Mater., 16, 5489, 2004
  32. Yu T, Joo J, Park YI, Hyeon T, Angew. Chem.-Int. Edit., 117, 7577, 2005
  33. Yan L, Yu R, Chen J, Xing X, Cryst. Growth Des., 8, 1474, 2008
  34. Liu J, Zhang D, Pu X, Liu J, Zhang R, Mater. Lett., 117, 158, 2014
  35. Yavari Z, Noroozifar M, Khorasani-Motlagh M, J. Appl. Electrochem., 45(5), 439, 2015
  36. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A, J. Mol. Struct., 596, 163, 2001
  37. Manivannan M, Int. J. Eng. Sci. Technol., 3, 8048, 2011
  38. Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK, Electrochim. Acta, 53(5), 2322, 2008
  39. Li L, Xing Y, Energies, 2, 789, 2009
  40. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, et al., Nat. Chem., 2, 826, 2010
  41. Zhao Y, Fan LZ, Ren JL, Hong B, Int. J. Hydrog. Energy, 39(9), 4544, 2014
  42. Fu Z, Li WS, Zhang WG, Sun FQ, Zhou ZH, Xiang XD, Int. J. Hydrog. Energy, 35(15), 8101, 2010
  43. Noroozifar M, Yavari Z, Khorasani-Motlagh M, Ghasemi T, Rohani-Yazdi SH, Mohammadi M, RSC Adv., 6, 563, 2016
  44. Wang Z, Zhu ZZ, Shi J, Li HL, Appl. Surf. Sci., 253(22), 8811, 2007
  45. Douk AS, Saravani H, Noroozifar M, J. Alloy. Compd., 739, 882, 2018
  46. Yang S, Yang J, Chung Y, Kwon Y, Int. J. Hydrog. Energy, 42(27), 17211, 2017
  47. Sequeira CAC, Santos DMF, Brito PSD, Appl. Surf. Sci., 252(17), 6093, 2006