Issue
Korean Journal of Chemical Engineering,
Vol.37, No.10, 1660-1668, 2020
Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics
In order to investigate interactions among biomass components on pyrolysis kinetics, pyrolysis experiments of individual components, synthetic biomass (designed by Design-Export software) and natural biomass (rice husk and corn straw) were conducted on a thermogravimetric analyzer (TGA). The results revealed that the pyrolysis behavior of cellulose is sharp, which is with low pyrolysis reaction order (1.38), high activation energy (168.61 kJ/mol) and high pre-exponential factor (3.50E+12 /s). The pyrolysis behavior of hemicellulose and lignin is slower but more complicated, both with high pyrolysis reaction order (2.30, 1.51), low activation energy (126.31, 87.21 kJ/mol), and low pre-exponential factor (9.67E+09, 2.59E+05 /s). Comparison of the experimental and calculated kinetics of synthetic samples confirmed that interactive effects on pyrolysis kinetics exist in the co-pyrolysis process. In particular, the presence of lignin inhibited the pyrolysis reaction rate of synthetic biomass, and cellulose played the dominant role in the activation energy and frequency factor. The pyrolysis reaction order was strongly influenced by hemicellulose owing to its abundant and complex branched chains. The predicted model was also established for calculating kinetic parameters of natural biomass with known proportions of three components. The predicted results were consistent with the experimental ones, validating the effectiveness of the prediction model.
[References]
  1. Gordillo ED, Belghit A, Fuel Process. Technol., 92(3), 314, 2011
  2. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S, Energy Fuels, 22(6), 4292, 2008
  3. Pang CH, Gaddipatti S, Tucker G, Lester E, Wu T, Bioresour. Technol., 172, 312, 2014
  4. Yang HP, Yan R, Chen HP, Energy Fuels, 20, 388, 2011
  5. Liu Q, Zhong Z, Wang S, J. Anal. Appl. Pyrolysis, 90, 213, 2011
  6. Zhao SL, Liu M, Zhao L, Zhu LL, Ind. Eng. Chem. Res., 57(15), 5241, 2018
  7. Yu J, Paterson N, Blamey J, Millan M, Fuel, 191, 140, 2017
  8. Fan YS, Cai YX, Li XH, Jiao LH, Xia JS, Deng XL, Energy Conv. Manag., 138, 106, 2017
  9. Song CC, Hu HQ, Zhu SW, J. Fuel Chem. Technol., 31, 311, 2003
  10. Cedric R, Dirion JL, Cabassud M, J. Anal. Appl. Pyrolysis, 79, 297, 2007
  11. Hosoya T, Kawamoto H, Saka S, J. Anal. Appl. Pyrolysis, 80, 118, 2007
  12. Wang S, Guo X, Wang K, J. Anal. Appl. Pyrolysis, 91, 183, 2011
  13. Thanatawee P, Rukthong W, Sunphorka S, Int. J. Chem. React. Eng., 14, 517, 2016
  14. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A, Bioresour. Technol., 102(10), 6230, 2011
  15. Song H, Acta Energiae. Solaris. Sinica, 29, 716, 2008
  16. Gottipati R, Mishra S, J. Fuel Chem. Technol., 39, 265, 2011
  17. Gangavati PB, Safi MJ, Singh A, Prasad B, Mishra IM, Thermochim. Acta, 428(1-2), 63, 2005
  18. Xing S, Yuan H, Huhetaoli, Energy, 114, 634, 2016
  19. Liu Q, Wang S, Wang K, Acta Phys.-Chim. Sinica, 24, 1957, 2008
  20. Wang S, Xia Z, Wang Q, J. Anal. Appl. Pyrolysis, 126, 118, 2017
  21. Wang SR, Ru B, Lin HZ, Luo ZY, Bioresour. Technol., 143, 378, 2013
  22. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548, 2009
  23. Wang S, Guo X, Wang K, J. Anal. Appl. Pyrolysis, 91, 183, 2011
  24. Cao W, Li J, Meresa M, Zhang X, J. Energy Inst., 92, 1303, 2019
  25. Yeo J, Chin B, Tan J, Loh YJ, J. Energy Inst., 92, 27, 2019
  26. Mamleev V, Bourbigot S, Yvon J, J. Anal. Appl. Pyrolysis, 80, 151, 2007
  27. Ozsin G, Bioresour. Technol., 300, 122700, 2020
  28. Luo LP, Guo XJ, Zhang Z, Chai MY, Rahman MM, Zhang XG, Cai JM, Energy Fuels, 34(4), 4874, 2020
  29. Moriana R, Zhang Y, Mischnick P, Li J, Carbohydr. Polym., 106, 60, 2014
  30. Ding YM, Huang BQ, Li KY, Du WZ, Energy, 195, 117010, 2020
  31. Karla D, Stephen D, Rory FD, Combust. Inst., 37, 2697, 2019
  32. Burra KRG, Gupta K, in AIAA Scitech 2020 Forum, AIAA (2020).
  33. Raveendran K, Ganesh A, Khilar KC, Fuel, 74, 1812, 1995
  34. Jang HJ, Kim S, Lee KB, Korean J. Chem. Eng., 34(1), 1, 2017
  35. Yang HP, Chen HP, Sheng-Lei DU, Proceed. Csee., 29, 70, 2009
  36. Zhao S, Liu M, Zhao L, Lu J, Korean J. Chem. Eng., 34(12), 3077, 2017