Issue
Korean Journal of Chemical Engineering,
Vol.37, No.9, 1599-1608, 2020
Nickel-cobalt alloy coatings prepared by electrodeposition Part I: Cathodic current efficiency, alloy composition, polarization behavior and throwing power
A systematic study was carried out to electrodeposit Ni-Co alloy coatings from a complexing acidic glycine bath on copper substrates. The effects of [Co2+]/[Ni2+] ratio, gly concentration, pH, current density and temperature on the current efficiency, Co content in the coatings and on polarization behavior were investigated. It was found that the CCE of these baths has a wide range starting from 55% up to a maximum value of 99.3%, relying on the operating parameters and the bath constituent. However, the CCE decreased from 96.2% to 84.8% when the gly content was enhanced from 25 to 150 g/L. On the other hand, the Co content in the deposit reached 97% (wt%) at [Co2+]/ [Ni2+]=0.43, i=16 mA cm-2, t=10min, T=20 °C. The codeposition of Co and Ni from acidic gly baths obeys the anomalous type of codeposition. The kinetic results indicate that the Tafel slope increased in the case of alloy deposition, while both the transfer coefficient αc and the exchange current io decreased. Moreover, the obtained results indicated that increasing the Co2+ content in the electrolytic solution has an inhibiting impact on the kinetics of the nickel-cobalt alloy plating. The throwing power is enhanced with enhancing [Co2+]/[Ni2+] ratios, while the addition of gly decreases it. However, the outcomes of macrothrowing power, throwing index and Wagner numbers are in excellent accord.
[References]
  1. Mahalingam T, Sundaram K, Velumani S, Raja M, Thanikaikarasan S, Kim YD, Asomoza R, Adv. Mater. Res., 68, 52, 2009
  2. Tian L, Xu J, Xiao S, Vacuum, 86, 27, 2011
  3. Carac G, Ispas A, J. Solid State Electrochem., 16, 3457, 2012
  4. Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285, 2013
  5. Esteves MC, Sumodjo PTA, Podlaha EJ, Electrochim. Acta, 56(25), 9082, 2011
  6. Karimzadeha A, Aliofkhazraeia M, Walsh FC, Surf. Coat. Technol., 372, 463, 2019
  7. Abdel-Karim R, Ramadan M, El-Raghy SM, J. Nanomaterials, 2018, 13, 2018
  8. Vasefi S, Parvari M, Korean J. Chem. Eng., 27(2), 422, 2010
  9. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547, 2018
  10. Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802, 2012
  11. Jang KI, Hong E, Kim JH, Korean J. Chem. Eng., 30(3), 620, 2013
  12. He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, et al., Energy Environ. Sci., 12, 250, 2019
  13. Dokouzis A, Bella F, Theodosiou K, Gerbaldi C, Leftheriotis G, Mater. Today Energy, 15, 100365, 2020
  14. Kamppinen A, Aitola K, Poskela A, Miettunen K, Lund PD, Electrochim. Acta, 335, 135652, 2020
  15. Baptayev B, Aukenova A, Mustazheb D, Balanay MP, J. Photochem. Photobiol. A-Chem., 383, 11977, 2019
  16. Nita N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252, 2015
  17. Jovic VD, Jovic BM, Pavlovic MG, Maksimovic V, J. Solid State Electrochem., 10, 959, 2006
  18. Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464, 2011
  19. Vijayakumar J, Mohan S, Kumar SA, Suseendiran SR, Pavithra S, Int. J. Hydrog. Energy, 38(25), 10208, 2013
  20. You YH, Gu CD, Wang XL, Tu JP, Surf. Coat. Technol., 206, 3632, 2012
  21. Li JM, Cai C, Song LX, Li JF, Zhang Z, Xue MZ, Liu YG, Trans. Nonferrous Met. Soc. China, 23, 2300, 2013
  22. Shi L, Sun CF, Gao P, Zhou F, Liu WM, Surf. Coat. Technol., 200, 4870, 2006
  23. Correia AN, Machado SAS, J. Appl. Electrochem., 33(5), 367, 2003
  24. Schwartz M, Myung NV, Nobe K, J. Electrochem. Soc., 151(7), C468, 2004
  25. Rahman IZ, Khaddem-Mousavi MV, Gandhi AA, Lynch TF, Rahman MA, J. Phys. Conference Series, 61, 523, 2007
  26. Harper CA, Electronic materials and processes handbook, McGraw Hill Professional, 1.6, New York NY (2003).
  27. Lupi C, Dellera A, Pasquali M, Imperatori P, Surf. Coat. Technol., 205, 5394, 2011
  28. Wang LP, Gao Y, Xue QJ, Liu HW, Xu T, Appl. Surf. Sci., 242(3-4), 326, 2005
  29. Ergenema O, Sivaraman KM, Pane S, Pellicer E, Telekic A, Hirt AM, Baro MD, Nelson BJ, Electrochem. Acta, 56, 1399, 2011
  30. Golodnitsky D, Rosenberg Y, Ulus A, Electrochim. Acta, 47(17), 2707, 2002
  31. Yu-Fang Y, Bin D, Zhao-Hui W, Adv. Chem. Eng. Sci., 1, 27, 2011
  32. Vazquez-Arenas J, Pritzker M, J. Solid State Electrochem., 17, 419, 2013
  33. Gomez E, Pane S, Valles E, Electrochim. Acta, 51(1), 146, 2005
  34. El-Feky H, Negem M, Roy S, Helal N, Baraka A, Sci. China. Chem., 56(10), 1446, 2013
  35. Goldbach S, de Kermadec R, Lapicque F, J. Appl. Electrochem., 30(3), 277, 2000
  36. Karpuz A, Kockar H, Alper M, Appl. Surf. Sci., 257(8), 3632, 2011
  37. Karpuz A, Kockar H, Alper M, Karaagac O, Haciismailoglu M, Appl. Surf. Sci., 258(8), 4005, 2012
  38. Karpuz A, Kockar H, Alper M, J. Mater. Sci. Mater. Electron., 24, 3376, 2013
  39. Golodnitsky D, Gudin NV, Volyanuk GA, J. Electrochem. Soc., 147(11), 4156, 2000
  40. Idris J, Christian C, Gaius E, J. Nano Mat., 2013, 1, 2013
  41. Hassani S, Raeissi K, Azzi M, Li D, Golozar MA, Szpunar JA, Corrosion Sci., 51, 2371, 2009
  42. Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285, 2013
  43. Hassani S, Raeissi K, Golozar MA, J. Appl. Electrochem., 38(5), 689, 2008
  44. Marikkannu KR, Kalaignan GP, Vasudevan T, J. Alloy. Compd., 438, 332, 2007
  45. Pellicer E, Pane S, Sivaraman KM, Ergeneman O, Surinach S, Baro MD, Nelson BJ, Sort J, Mater. Chem. Phys., 130(3), 1380, 2011
  46. Taranina OA, Evreinova NV, Shoshina IA, Naraev VN, Tikhonov KI, Russ. J. Appl. Chem., 83(1), 58, 2010
  47. Zhang YH, Feng L, Qiu W, J. Mater. Sci., 54(13), 9507, 2019
  48. Tarozaite R, Sudavicius A, Sukackiene Z, Norkus E, Trans. IMF, 92(3), 146, 2014
  49. Gharahcheshmeh MH, Sohi MH, J. Appl. Electrochem., 40(8), 1563, 2010
  50. Wei JC, Schwartz M, Nobe K, J. Electrochem. Soc., 155(10), D660, 2008
  51. Boiadjieva T, Kovacheva D, Lyutov L, Monev M, J. Appl. Electrochem., 38(10), 1435, 2008
  52. Lacnjevac U, Jovic BM, Jovic VD, J. Electrochem. Soc., 159(5), D310, 2012
  53. Ibrahim MAM, Al Radadi RM, Mat. Chem. Phys., 151, 222, 2015
  54. Ibrahim MAM, Al Radadi RM, Int. J. Electrochem. Sci., 10, 4946, 2015
  55. Brenner A, Electrodeposition of alloys, Academic Press, New York, 1 (1963).
  56. Ibrahim MAM, Bakdash RS, Surf. Coat. Technol., 282, 139, 2015
  57. Ibrahim MAM, Bakdash RS, Trans. IMF, 92(4), 218, 2014
  58. Ibrahim MAM, J. Chem. Technol. Biotechnol., 75(8), 745, 2000
  59. Muri R, Kurakane K, Sekine T, Bull. Chem. Soc. Jpn., 49, 335, 1976
  60. Mohamed AE, Rashwan SM, Abdel-Wahaab SM, Kamel MM, J. Appl. Electrochem., 33(11), 1085, 2003
  61. Rashwan SM, Mater. Chem. Phys., 89(2-3), 192, 2005
  62. Ibrahim MAM, Abd El Rehim SS, El Naggar MM, Abbass MA, J. Appl. Surf. Finish., 1(4), 293, 2006
  63. Smith RM, Martell AE, Motekaitis RJ, Critical Stability Constants of Metal Complexes Database, version 8.0, NIST, U.S. (2004).
  64. Davies G, Kustin K, Pasternack RF, Inorg. Chem., 8, 1535, 1969
  65. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S, Pure Appl. Chem., 86(2), 245, 2014
  66. Mouanga M, Ricq L, Douglade G, Douglade J, Bercot P, Surf. Coat. Technol., 201, 762, 2006
  67. Wagner C, J. Electrochem. Soc., 98, 116, 1951